Skip to main content
Log in

Low-temperature sintered pollucite ceramic from geopolymer precursor using synthetic metakaolin

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, pollucite ceramic with high relative density and low coefficient of thermal expansion (CTE) was prepared from Cs-based geopolymer using synthetic metakaolin. Crystallization and sintering behavior of the Cs-based geopolymer together with thermal expansion behavior of the resulted pollucite ceramic were investigated. On heating at 1200 °C for 2 h, the amorphous Cs-based geopolymer completely crystallized into pollucite based on crystal nucleation and growth mechanism. Selected area diffraction analysis and XRD results confirmed the resulted pollucite ceramic at room temperature was pseudo-cubic phase with superlattice structure. Compared with Cs-based geopolymer using natural metakaolin, geopolymer using synthetic metakaolin in this article showed a much lower viscous sintering temperature range, which started at 800 °C, reached a maximum value of −7.47 × 10−4/°C at 1121.9 °C, and ended at 1200 °C. Cesium volatilization appeared only when temperature was above 1250 °C. Therefore, densified pollucite ceramic can be prepared from Cs-based geopolymer using synthetic metakaolin without cesium volatilization. Abnormal thermal shrinkage of pollucite ceramic was observed at temperature range from 25.3 to 54.6 °C because of pseudo-cubic to cubic phase transition, and its average CTE was 2.8 × 10−6/°C from 25 to 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gallagher SA, McCarthy GJ (1981) J Inorg Nucl Chem 43(8):1773

    Article  CAS  Google Scholar 

  2. Hess NJ, Espinosa FJ, Conradson SD, Weber WJ (2000) J Nucl Mater 281(1):22

    Article  CAS  Google Scholar 

  3. Xu HW, Navrotsky A, Balmer ML, Su YL (2002) J Am Ceram Soc 85(5):1235

    Article  Google Scholar 

  4. Kobayashi H, Yanase I, Mitamura T (1997) J Am Ceram Soc 80(8):2161

    Article  CAS  Google Scholar 

  5. Yanase I, Konakawa J, Kobayashi H (2006) J Am Ceram Soc 89(1):184

    Article  CAS  Google Scholar 

  6. Yanase I, Tamai S, Kobayashi H (2003) J Am Ceram Soc 86(8):1360

    Article  CAS  Google Scholar 

  7. Yanase I, Tamai S, Kobayashi H (2003) J Ceram Soc Japan 111(8):533

    Article  CAS  Google Scholar 

  8. Yanase I, Kobayashi H, Mitamura T (1999) J Therm Anal Calorim 57:695

    Article  CAS  Google Scholar 

  9. Bedard RL, Broach RW, Flanigen EM (1992) Mater Res Soc Symp Proc 271:581

    Article  CAS  Google Scholar 

  10. Hogana MA, Risbud SH (1991) J Mater Res 6(2):217

    Article  Google Scholar 

  11. Palmer DC, Dove MT, Ibberson RM, Powell AM (1997) Am Mineral 82:16

    CAS  Google Scholar 

  12. Davidovits J (1991) J Therm Anal Calorim 37(8):1633

    Article  CAS  Google Scholar 

  13. Davidovits J (2002) Geopolymer conference. The University of Melbourne, Melbourne

    Google Scholar 

  14. Barbosa VFF, MacKenzie KJD (2003) Mater Lett 57(9–10):1477

    Article  CAS  Google Scholar 

  15. Barbosa VFF, MacKenzie KJD (2003) Mater Res Bull 38(2):319

    Article  CAS  Google Scholar 

  16. Bell JL, Driemeyer PE, Kriven WM (2009) J Am Ceram Soc 92(3):607

    Article  CAS  Google Scholar 

  17. Duxson P, Lukey GC, van Deventer JSJ (2007) J Mater Sci 42(9):3044. doi:10.1007/s10853-006-0535-4

    Article  CAS  Google Scholar 

  18. Duxson P, Lukey GC, van Deventer JSJ (2006) J Non Cryst Solids 352:5541

    Article  CAS  Google Scholar 

  19. Bell JL, Driemeyer PE, Kriven WM (2009) J Am Ceram Soc 92(1):1

    Article  CAS  Google Scholar 

  20. Lee SJ, Kriven WM (2005) Mater Struct 38(275):87

    Article  CAS  Google Scholar 

  21. Nguyen MH, Lee SJ, Kriven WM (1999) J Mater Res 14(8):3417

    Article  CAS  Google Scholar 

  22. Vepa SSVSS, Umarji AM (1993) J Am Ceram Soc 76(4):1873

    Article  CAS  Google Scholar 

  23. Bansal NP (1998) J Mater Sci 33:4711. doi:10.1023/A:1004484903436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by program for new century excellent talents in university (NCET, Grant No. NCET-04-0327), program of excellent team in Harbin Institute of Technology and the science fund for distinguished young scholars of Heilongjiang Province. The authors express their gratitude to Dr. Rao Jiancun in University of Groningen for the discussion on the pollucite phase transition, and we are also very grateful to Professor Liu Kedong in the Department of English Language at Harbin Institute of Technology for his assistance in proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechang Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, P., Jia, D. Low-temperature sintered pollucite ceramic from geopolymer precursor using synthetic metakaolin. J Mater Sci 48, 1812–1818 (2013). https://doi.org/10.1007/s10853-012-6944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6944-7

Keywords

Navigation