Skip to main content
Log in

High coercivity (Nd8Y3)–(Fe62Nb3Cr1)–B23 magnets produced by injection casting

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High coercivity (Nd8Y3)–(Fe62Nb3Cr1)–B23 magnets in rods have been produced by copper mold injection casting. Magnetic properties, microstructure, and phase evolution in the as-cast and annealed states have been presented and discussed. The (Nd8Y3)–(Fe62Nb3Cr1)–B23 alloys show hard magnetic properties in the as-cast state. Annealing induces ideal microstructure containing magnetically hard and soft phases with hard/soft volume ratio of 73/27. Exchange coupling between magnetically hard (Nd,Y)2Fe14B phase and soft α-Fe (Fe3B) phase leads to excellent hard magnetic properties. Highest coercivity of 1230 kA/m in (Nd8Y3)–(Fe62Nb3Cr1)–B23 magnet originates from the large amount of hard phase with high magnetocrystalline anisotropy, formation of thin grain boundary phase and refinement of magnetic grains. Nb and Cr doping modify the magnetic phases. Annealed magnetic rods with a diameter of 2 mm and 36 mm in length demonstrated the maximum magnetic properties i.e., iHc of 1230 kA/m, Br of 0.49 T, and (BH)max of 45.6 kJ/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skomski R, Coey JMD (1993) Phys Rev B 48:15812

    Article  CAS  Google Scholar 

  2. Schrefl T, Fidler J, Kronmüller H (1994) Phys Rev B 49:6100

    Article  CAS  Google Scholar 

  3. Manaf A, Buckley RA, Davies HA, Leonowicz M (1991) J Magn Magn Mater 101:360

    Article  CAS  Google Scholar 

  4. Hirosawa S, Kanekiyo H, Uehara M (1993) J Appl Phys 73:6488

    Article  CAS  Google Scholar 

  5. Chang HW, Hsieh CC, Gan JY, Cheng YT, Shih MF, Chang WC (2011) J Phys D Appl Phys 44:064002

    Article  Google Scholar 

  6. Xiong XY, Hono K, Hirosawa S, Kanekiyo H (2002) J Appl Phys 91:9308

    Article  CAS  Google Scholar 

  7. Chu Z, Yelon WB, Ma BM, Chen Z, Brown DN (2002) J Appl Phys 91:7878

    Article  CAS  Google Scholar 

  8. Ding J, McComick PG, Street R (1993) J Magn Magn Mater 124:1

    Article  Google Scholar 

  9. Smith PAI, Ding J, Street R, McComick PG (1996) Scripta Mater 3:461

    Google Scholar 

  10. Shultz L, (1999). In: Prinz G, Hajipanayis GC (eds) Science and technology of nanostructured materials, NATO ASI Series, vol 259, p 583

  11. Hadjipanayis GC, Withanawasam L, Krause RF (1995) IEEE Trans Magn 31:3596

    Article  CAS  Google Scholar 

  12. Yang F, Liu W, Lv XK, Liu XH, Guo S, Gong WJ, Zhang ZD (2009) Mater Lett 63:2652

    Article  CAS  Google Scholar 

  13. Zhang J, Lim KY, Feng YP, Li Y (2007) Scripta Mater 56:943

    Article  CAS  Google Scholar 

  14. Zhanyong W, Wenqing L, Yanli S (2010) J Rare Earths 28:417

    Article  Google Scholar 

  15. Liu Y, Xu L, Wang Q, Li W, Zhang X (2009) Appl Phys Lett 94:172502

    Article  Google Scholar 

  16. Jiles DC (2003) Acta Mat 51:5907

    Article  CAS  Google Scholar 

  17. Sultana D, Marinescu M, Zhang Y, Hadjipanayis GC (2006) Phys B 384:306

    Article  CAS  Google Scholar 

  18. Zhang W, Inoue A (2002) Appl Phys Letts 80:1610

    Article  CAS  Google Scholar 

  19. Marinescu M, Chiriac H, Grigoras M (2005) J Magn Magn Mater 290–291:1267

    Article  Google Scholar 

  20. Tan XH, Xu H, Bai Q, Zhao WJ, Dong YD (2007) Appl Phys Lett 91:252501

    Article  Google Scholar 

  21. Yin JH, Zhou YX, Tang SL, Tang W, Wang DH, Zhang JR, Du YW (1999) J Appl Phys 85:7336

    Article  CAS  Google Scholar 

  22. Hirosawa S, Kanekiyo H, Miyoshi T, Shioya Y (2004) J Magn Magn Mater 239:58

    Article  Google Scholar 

  23. Zhian C, Ji L, Yanli S, Zhimeng G (2010) J Rare Earths 28:277

    Google Scholar 

  24. Ahmad Z, Tao S, Ma T, Zhao G, Mi Yan (2011) J Alloys Compd 509:8952

    Article  CAS  Google Scholar 

  25. Kanekiyo H, Uehara M, Hirosawa S (1994) Mater Sci Eng A 181(182):868

    Google Scholar 

  26. Harrison NJ, Davies HA, Todd I (2006) J Appl Phys 99(8):08B504

    Article  Google Scholar 

  27. Hirosawa S, Kanekiyo H, Miyoshi T, Shigemoto Y, Murakami K, Senzaki Y, Nishiuchi T (2006) J Alloys Compd 260–265:408

    Google Scholar 

  28. Zhanyong W, Wenqing L, Bangxin Z, Jiansen N, Hui Xu, Yongzheng F, Minglin J (2009) Phys B 404:1321

    Article  Google Scholar 

  29. Schrefl T, Fidler J (1998) J Magn Magn Mater 970:177

    Google Scholar 

  30. Ahmad Z (2012) Synthesis, microstructure and magnetic properties of NdYFeNbB bulk nanocomposite permanent magnets. Post-doctoral Final Report, Zhejiang University, Hangzhou, China

  31. Hanawalt D, Rinn HW, Frevel LK (1938) Ind Eng Chem Anal Ed 10:457

    Article  CAS  Google Scholar 

  32. Harold PK, Alexander LE (1973) X-ray diffraction procedures, 2nd edn. Wiley, Pittsburgh, p 687

    Google Scholar 

  33. Young RA, Sakthivel A, Moss TS, Paiva-Santos C (1995) J Appl Crystallogr 28:366

    Article  Google Scholar 

  34. Lutterotti L, Scardi P, Maistrelli P (1990) J Appl Crystallogr 26:246

    Article  Google Scholar 

  35. Kelly PE, Grady KO, Mayo PI, Cantrell RW (1989) IEEE Tran Magn 25:3881

    Article  CAS  Google Scholar 

  36. Vajda F, Torre ED (1994) J Appl Phys 75:5689

    Article  CAS  Google Scholar 

  37. Hadjipanayis GC (1999) J Magn Magn Mater 200:373

    Article  CAS  Google Scholar 

  38. Ahmad Z, Tao S, Ma T, Yan M (2012) J Mater Res 27:725

    Article  CAS  Google Scholar 

  39. Ahmad Z, Tao S, Ma T, Yan M (2012) J Magn Magn Mater 324:1534

    Article  CAS  Google Scholar 

  40. Uehara M, Kono TJ, Kanekiyo H, Hirosawa S, Sumiyama K, Suzuki K (1998) J Magn Magn Mater 177:997

    Article  Google Scholar 

  41. You CY, Ping DH, Hono K (2006) J Magn Magn Mater 299:136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 50971113, 5117409, 51171169) and the Fundamental Research Funds for the Central Universities (Grant No. 2012QNA4007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, Z., Yan, M., Liu, Z. et al. High coercivity (Nd8Y3)–(Fe62Nb3Cr1)–B23 magnets produced by injection casting. J Mater Sci 48, 1779–1786 (2013). https://doi.org/10.1007/s10853-012-6939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6939-4

Keywords

Navigation