Skip to main content

Advertisement

Log in

Strengthening of Al through addition of Fe and by processing with high-pressure torsion

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Iron is a common impurity element in aluminum and is expected to be used in a controlled manner. In this study, high-pressure torsion (HPT) was applied to 10-mm diameter bulk disk-type samples of Al–Fe alloys with different Fe additions: 2 and 4 wt%, and different initial states: as-cast, extruded, and annealed. Intense strain was introduced to the materials by HPT processing at room temperature under a pressure of 6 GPa for up to 75 revolutions. Tensile tests showed that a significant increase in the UTS above 500 MPa occurs with 13 % elongation in the Al–2 % Fe sample processed by HPT from the as-cast state. Microstructural analyses revealed that a close-to nanograined microstructure with a size of 125 nm and dispersion of intermetallic particles below 50 nm was attained, along with a maximum supersaturation of Fe of ~0.67 wt%. The Al–4 % Fe sample reached even higher supersaturation of Fe to ~0.99 % and similar strength but lower elongation due to insufficient fragmentation of coarse intermetallics. It is concluded that the eutectic structures in the cast state are a major contributor to the enhanced strengthening and the retained elongation. The saturated states of the microhardness at equal Fe contents were shown to be similar regardless of the initial state upon sufficient straining by HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM J Min Met Mat S 58:33

    Article  Google Scholar 

  3. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  4. Belov N, Aksenov AA, Eskin D (2002) Iron in aluminum alloys: impurity and alloying element. Taylor & Francis, London, p 3, 91

  5. Kattner UR, Burton BP (1993) In: Baker H (ed) ASM handbook vol. 03—alloy phase diagrams. ASM International, Materials Park, pp 2–44

    Google Scholar 

  6. Hatch JE (ed) (1984) Aluminum: properties and physical metallurgy. ASM International, Materials Park, p 25

    Google Scholar 

  7. Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Nanostruct Mater 10:691

    Article  CAS  Google Scholar 

  8. Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Scripta Mater 38:1516

    Google Scholar 

  9. Stolyarov VV, Lapovok R, Brodova IG, Thomson PF (2003) Mater Sci Eng A 357:159

    Article  Google Scholar 

  10. Stolyarov VV, Valiev RZ (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. The Minerals, Metals and Materials Society, Warrendale, p 209

    Google Scholar 

  11. Kaloshkin SD, Tcherdyntsev VV, Tomilin IA, Gunderov DV, Stolyarov VV, Baldokhin YV, Brodova IG, Shelekhov EV (2002) Mater Trans 43:2031

    Article  CAS  Google Scholar 

  12. Tcherdyntsev VV, Kaloshkin S, Afonina EA, Tomilin IA, Baldokhin YV, Shelekhov EV, Gunderov DV, Brodova IG, Stolyarov VV (2003) Defect Diffus Forum 216:313

    Article  Google Scholar 

  13. Tcherdyntsev VV, Kaloshkin SD, Gunderov DV, Afonina EA, Brodova IG, Stolyarov VV, Baldokhin YV, Shelekhov EV, Tomilin IA (2004) Mater Sci Eng A 375:888

    Article  Google Scholar 

  14. Shabashov VA, Brodova IG, Mukoseev AG, Sagaradze VV, Litvinov AV (2007) J Phys 19:386222

    Google Scholar 

  15. Lendvai A (1985) Thermochim Acta 93:681

    Article  CAS  Google Scholar 

  16. Cubero-Sesin JM, Horita Z (2012) Metall Mater Trans A. doi:10.1007/s11661-012-1341-z

    Google Scholar 

  17. Tonejc A, Bonefacic A (1969) J Appl Phys 40:419

    Article  CAS  Google Scholar 

  18. Tonejc A (1971) Metall Trans 2:437

    Article  CAS  Google Scholar 

  19. Jones H (1983) Scripta Metall 17:97

    Article  CAS  Google Scholar 

  20. Cubero-Sesin JM, Horita Z (2012) Mater Trans 53:46

    Article  CAS  Google Scholar 

  21. Cubero-Sesin JM, Horita Z (2012) Mater Sci Eng A 558:462

    Article  CAS  Google Scholar 

  22. Black PJ (1955) Acta Crystallogr 8:175

    Article  CAS  Google Scholar 

  23. Black PJ (1955) Acta Crystallogr 8:43

    Article  CAS  Google Scholar 

  24. Skjerpe P (1987) Metall Mater Trans A 18:189

    Article  Google Scholar 

  25. Jones H (1969) Mater Sci Eng 5:1

    Article  CAS  Google Scholar 

  26. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  27. Harai Y, Ito Y, Horita Z (2008) Scripta Mater 58:469

    Article  CAS  Google Scholar 

  28. Ito Y, Horita Z (2009) Mater Sci Eng A 503:32

    Article  Google Scholar 

  29. Edalati K, Ito Y, Suehiro K, Horita Z (2009) Int J Mater Res 100:1668

    Article  CAS  Google Scholar 

  30. Xu C, Horita Z, Langdon TG (2010) Mater Trans 51:2

    Article  CAS  Google Scholar 

  31. Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out as a part of the program in Japan Aluminum Association. One of the authors (JC) thanks the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan for a PhD scholarship. This work was supported in part by the Light Metals Educational Foundation of Japan, in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan in the Innovative Area “Bulk Nanostructured Metals”, and in part by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Cubero-Sesin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cubero-Sesin, J.M., Horita, Z. Strengthening of Al through addition of Fe and by processing with high-pressure torsion. J Mater Sci 48, 4713–4722 (2013). https://doi.org/10.1007/s10853-012-6935-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6935-8

Keywords

Navigation