Skip to main content
Log in

High temperature thermal stability of ultrafine-grained silver processed by equal-channel angular pressing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high temperature thermal stability of the ultrafine-grained (UFG) microstructures in low stacking-fault-energy silver was studied by differential scanning calorimetry (DSC). The UFG microstructures in two samples having purity levels of 99.995 and 99.99 at.% were achieved by four passes of equal-channel angular pressing at room temperature. The defect structure was studied by electron microscopy, X-ray line profile analysis, and positron annihilation spectroscopy before and after the exothermic DSC peak related to recovery and recrystallization. The heat released in the DSC peak was correlated to the change of defect structure during annealing. It was found for both compositions that a considerable fraction of stored energy (~15–20 %) was retained in the samples even after the DSC peak due to the remaining UFG regions and a large density of small dislocation loops in the recrystallized volumes. The larger impurity level in Ag yielded a higher temperature of recrystallization and a lower released heat. The latter observation is explained by the much lower vacancy concentration before the DSC peak which is attributed to the segregation of dopants at grain boundaries resulting in a smaller free volume in the interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Segal VM (1999) Mater Sci Eng A 271:322

    Article  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  5. Cao WQ, Godfrey A, Liu W, Liu Q (2003) Mater Sci Eng A360:420

    CAS  Google Scholar 

  6. Molodova X, Gottstein G, Winning M, Hellmig RJ (2007) Mater Sci Eng A 460–461:204

    Google Scholar 

  7. Cao WQ, Gu CF, Pereloma EV, Davies CHJ (2008) Mater Sci Eng A 492:74

    Article  Google Scholar 

  8. Zhilyaev AP, Nurislamova GV, Surinach S, Baró MD, Langdon TG (2002) Mater Phys Mech 5:23

    CAS  Google Scholar 

  9. Gubicza J, Dobatkin SV, Khosravi E, Kuznetsov AA, Lábár LJ (2011) Mater Sci Eng A 528:1828

    Article  Google Scholar 

  10. Gubicza J, Nam NH, Balogh L, Hellmig RJ, Stolyarov VV, Estrin Y, Ungár T (2004) J Alloys Compd 378:248

    Article  CAS  Google Scholar 

  11. Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungár T (2005) Mater Sci Eng A 400–401:334

    Google Scholar 

  12. Huang YK, Menovsky AA, de Boer FR (1993) Nanostruct Mater 2:587

    Article  CAS  Google Scholar 

  13. Kumpmann A, Günther B, Kunze H-D (1993) Mater Sci Eng A168:165

    CAS  Google Scholar 

  14. Zhilyaev AP, Nurislamova GV, Valiev RZ, Baro MD, Langdon TG (2002) Metall Mater Trans A 33:1865

    Article  Google Scholar 

  15. Cizek J, Prochazka I, Cieslar M, Kuzel R, Kuriplach J, Chmelik F, Stulikova I, Becvar F, Melikhova O (2002) Phys Rev B 65:094106

    Article  Google Scholar 

  16. Zhilyaev AP, Gubicza J, Nurislamova G, Révész Á, Suriñach S, Baró MD, Ungár T (2003) Phys Stat Sol (A) 198:263

    Article  CAS  Google Scholar 

  17. Zhilyaev AP, Kim B-K, Szpunar JA, Baro MD, Langdon TG (2005) Mater Sci Eng A 391:377

    Article  Google Scholar 

  18. Lugo N, Llorca N, Sunol JJ, Cabrera JM (2010) J Mater Sci 45:2264. doi:10.1007/s10853-009-4139-7

    Article  CAS  Google Scholar 

  19. Lian J, Valiev RZ, Baudelet B (1995) Acta Metall Mater 43:4165

    Article  CAS  Google Scholar 

  20. Tjong SC, Chen H (2004) Mater Sci Eng, R 45:1

    Article  Google Scholar 

  21. Kuo C-M, Lin C-S (2007) Scr Mater 57:667

    Article  CAS  Google Scholar 

  22. Setman D, Schafler E, Korznikova E, Zehetbauer MJ (2008) Mater Sci Eng A 493:116

    Article  Google Scholar 

  23. Setman D, Kerber MB, Schafler E, Zehetbauer MJ (2010) Metall Mater Trans A 41:810

    Article  Google Scholar 

  24. Wang G, Wu SD, Zuo L, Esling C, Wang ZG, Li GY (2003) Mater Sci Eng A 346:83

    Article  Google Scholar 

  25. Estrin Y, Isaev NV, Lubenets SV, Malykhin SV, Pugachov AT, Pustovalov VV, Reshetnyak EN, Fomenko VS, Fomenko LS, Shumilin SE, Janecek M, Hellmig RJ (2006) Acta Mater 54:5581

    Article  CAS  Google Scholar 

  26. Matsunaga M, Horita Z (2009) Mater Trans 50:1633

    Article  CAS  Google Scholar 

  27. Gubicza J, Chinh NQ, Lábár LJ, Hegedűs Z, Langdon TG (2010) Mater Sci Eng A 527:752

    Article  Google Scholar 

  28. Hegedűs Z, Gubicza J, Kawasaki M, Chinh NQ, Fogarassy Zs, Langdon TG (2011) Mater Sci Eng A 528:8694

    Article  Google Scholar 

  29. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328

    Article  Google Scholar 

  30. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  31. Ribárik G, Gubicza J, Ungár T (2004) Mater Sci Eng A 387–389:343

    Google Scholar 

  32. Balogh L, Ribárik G, Ungár T (2006) J Appl Phys 100:023512

    Article  Google Scholar 

  33. Kirkegaard P, Eldrup M, Mogensen OE, Pedersen NJ (1981) Phys Commun 23:307

    Article  CAS  Google Scholar 

  34. Folegati P, Makkonen I, Ferragut R, Puska MJ (2007) Phys Rev B 75:054201

    Article  Google Scholar 

  35. Shrivastava SB, Bonde HP (1978) Phys Stat Sol (B) 88:269

    Article  CAS  Google Scholar 

  36. Hehenkamp Th (1994) J Phys Chem Solids 55:907

    Article  CAS  Google Scholar 

  37. Schafler E, Steiner G, Korznikova E, Kerber M, Zehetbauer MJ (2005) Mater Sci Eng A 410–411:169

    Google Scholar 

  38. Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New York

    Google Scholar 

  39. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison Wesley, Reading

    Google Scholar 

  40. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  41. Balluffi RW (1978) J Nucl Mater 69–70:240

    Article  Google Scholar 

  42. Dawson HI (1965) Acta Metall 13:453

    Article  CAS  Google Scholar 

  43. Kamel R, Attia EA (1961) Acta Metall 9:1047

    Article  CAS  Google Scholar 

  44. Linderoth S, Hidalgo C (1987) Phys Rev B 36:4054

    Article  CAS  Google Scholar 

  45. Hakkinen H, Makinen S, Manninen M (1990) Phys Rev B 41:12441

    Article  CAS  Google Scholar 

  46. Gröger V, Geringer T, Pichl W, Krexner G, Novotny I, Procházka I (1996) Mater Sci Forum 210–213:743

    Article  Google Scholar 

  47. Schaefer H-E, Wurschum R, Birringer R, Gleiter H (1988) Phys Rev B 38:9545

    Article  CAS  Google Scholar 

  48. Lucke K, Gottstein G (1981) Acta Metall 29:779

    Article  Google Scholar 

  49. Estrin Y, Gottstein G, Shvindlerman LS (1999) Acta Mater 47:3541

    Article  CAS  Google Scholar 

  50. Shvindlerman LS, Gottstein G, Ivanov VA, Molodov DA, Kolesnikov D, Lojkowski W (2006) J Mater Sci 41:7725. doi:10.1007/s10853-006-0563-0

    Article  CAS  Google Scholar 

  51. Wegner D (1988) J Phys F: Met Phys 18:2291

    Article  CAS  Google Scholar 

  52. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford

    Google Scholar 

  53. Wolf D (1984) Acta Metall 32:735

    Article  CAS  Google Scholar 

  54. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A 524:143

    Article  Google Scholar 

  55. Millett PC, Selvam RP, Saxena A (2007) Acta Mater 55:2329

    Article  CAS  Google Scholar 

  56. Klemradt U, Drittler B, Hoshino T, Zeller R, Dederichs PH, Stefanou N (1991) Phys Rev B 43:9487

    Article  CAS  Google Scholar 

  57. Haessner F, Hoschek G, Tolg G (1979) Acta Metall 27:1539

    Article  CAS  Google Scholar 

  58. Karakaya I, Thompson WT (1990) J Phase Equilibria 11:266

    CAS  Google Scholar 

  59. Lee B-Z, Oh C-S, Lee DN (1994) J Alloys Compd 215:293

    Article  CAS  Google Scholar 

  60. Liu J, Guo C, Li C, Du Z (2012) Thermochim Acta 539:44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Hungarian Scientific Research Fund, OTKA, Grant No. K-81360, in part by the National Science Foundation of the United States under Grant No. DMR-0855009 (MK and TGL) and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL). The European Union and the European Social Fund have provided financial support to this project under Grant Agreement No. TÁMOP 4.2.1./B-09/1/KMR-2010-0003. The authors thank Andrea Jakab for preparation of the TEM samples and Zoltán Dankházi for evaluating the EBSD results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenő Gubicza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegedűs, Z., Gubicza, J., Kawasaki, M. et al. High temperature thermal stability of ultrafine-grained silver processed by equal-channel angular pressing. J Mater Sci 48, 1675–1684 (2013). https://doi.org/10.1007/s10853-012-6926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6926-9

Keywords

Navigation