Journal of Materials Science

, Volume 48, Issue 4, pp 1593–1603 | Cite as

Dislocation controlled wear in single crystal silicon carbide

Article

Abstract

For better design and durability of nanoscale devices, it is important to understand deformation in small volumes and in particular how deformation mechanisms can be related to frictional response of an interface in the regime where plasticity is fully developed. Here, we show that when the size of the cutting tool is decreased to the nanometer dimensions, silicon carbide wears in a ductile manner by means of dislocation plasticity. We present different categories of dislocation activity observed for single asperity sliding on SiC as a function of depth of cut and for different sliding directions. For low dislocation density, plastic contribution to frictional energy dissipation is shown to be due to glide of individual dislocations. For high dislocation densities, we present an analytical model to relate shear strength of the sliding interface to subsurface dislocation density. Furthermore, it is shown that a transition from plowing to cutting occurs as function of depth of cut and this transition can be well described by a macroscopic geometry-based model for wear transition.

References

  1. 1.
    Sundararajan S, Bhushan B (1998) Wear 217(2):251. doi:10.1016/S0043-1648(98)00169-0 CrossRefGoogle Scholar
  2. 2.
    Reddy JD, Volinsky AA, Frewin CL, Locke C, Saddow SE (2008) In: Material Research Society Symposium Proceedings Silicon Carbide and Related Materials. p 633Google Scholar
  3. 3.
    Mehregany M, Zorman CJ, Roy S, Fleischman AS, Wu CH, Rajan N (2000) Int Mater Rev 45(3):85. doi:10.1179/095066000101528322 CrossRefGoogle Scholar
  4. 4.
    Zorman CA, Parro RJ (2008) Phys Status Solidi B 245(7):1404. doi:10.1002/pssb.200844135 CrossRefGoogle Scholar
  5. 5.
    Patten J, Gao W, Yasuto K (2005) J Manuf Sci Eng Trans ASME 127:522. doi:10.1115/1.1949614
  6. 6.
    Yan J, Gai X, Harada H (2010) J Nanosci Nanotechnol 10:7808. doi:10.1166/jnn.2010.2895 CrossRefGoogle Scholar
  7. 7.
    Mishra M, Szlufarska I (2009) Acta Mater 57:6156. doi:10.1016/j.actamat.2009.08.041 CrossRefGoogle Scholar
  8. 8.
    Shim S, Jang J, Pharr GM (2008) Acta Mater 56(15):3824. doi:10.1016/j.actamat.2008.04.013 CrossRefGoogle Scholar
  9. 9.
    Chen HP, Kalia RK, Nakano A, Vashishta P, Szlufarska I (2007) J Appl Phys 102(063):514Google Scholar
  10. 10.
    Szlufarska I, Kalia RK, Nakano A, Vashishta P (2005) Phys Rev B 71(174):113. doi:10.1103/PhysRevB.71.174113 Google Scholar
  11. 11.
    Noreyan A, Amar JG, Marinescu I (2005) Mat Sci Eng B Solid 117(3):235. doi:10.1016/j.mseb.2004.11.016 CrossRefGoogle Scholar
  12. 12.
    Jang J, Lance MJ, Wen S, Tsui TY, Pharr GM (2005) Acta Mater 53(6):1759. doi:10.1016/j.actamat.2004.12.025 CrossRefGoogle Scholar
  13. 13.
    Chrobak D, Nordlund K, Nowak R (2007) Phys Rev Lett 98(045):502. doi:10.1103/PhysRevLett.98.045502 Google Scholar
  14. 14.
    Szlufarska I, Chandross M, Carpick RW (2008) J Phys D Appl Phys 41(12):123001CrossRefGoogle Scholar
  15. 15.
    Komanduri R, Raff LMPI (2001) Mech Eng B J Eng 215: 1639Google Scholar
  16. 16.
    Lawson BL, Kota N, Ozdoganlar OB (2008) J Manuf Sci Eng Trans ASME 130(031):116. doi:10.1115/1.2917268 Google Scholar
  17. 17.
    Zhang JJ, Sun T, Yan YD, Liang YC, Dong S (2008) Appl Surf Sci 254:4774. doi:10.1016/j.apsusc.2008.01.096 CrossRefGoogle Scholar
  18. 18.
    Mishra M, Szlufarska I (2012) Tribol Lett 45:417. doi:10.1007/s11249-011-9899-y CrossRefGoogle Scholar
  19. 19.
    Vashishta P, Kalia RK, Nakano A, Rino JP (2007) J Appl Phys 101(10):103515CrossRefGoogle Scholar
  20. 20.
    Rino JP, Ebbsjö I, Branicio PS, Kalia RK, Nakano A, Shimojo F, Vashishta P (2004) Phys Rev B 70:045207CrossRefGoogle Scholar
  21. 21.
    Mo Y, Turner K, Szlufarska I (2009) Nature 457(7233):1116CrossRefGoogle Scholar
  22. 22.
    Gao J, Luedtke WD, Gourdon D, Ruths M, Israelachvili JN, Landman U (2004) J Phys Chem B 108:3410. doi:10.1021/jp036362l CrossRefGoogle Scholar
  23. 23.
    Nix WD, Gao H (1998) J Mech Phys Solids 46:411. doi:10.1016/S0022-5096(97)00086-0 CrossRefGoogle Scholar
  24. 24.
    Feng G, Nix WD (2004) Scr Mater 51:599. doi:10.1016/j.scriptamat.2004.05.034 CrossRefGoogle Scholar
  25. 25.
    M’ndange-Pfupfu A, Marks LD (2010) Tribol Lett 39(2):163CrossRefGoogle Scholar
  26. 26.
    Merkle AP, Marks LD (2007) Tribol Lett 26(1):73. doi:10.1007/s11249-006-9191-8 CrossRefGoogle Scholar
  27. 27.
    Deshpande VS, Needleman A, Van der Giessen E (2004) Acta Mater 52(10):3135CrossRefGoogle Scholar
  28. 28.
    Bhushan B, Nosonovsky M (2004) Acta Mater 52(8):2461CrossRefGoogle Scholar
  29. 29.
    Fleck NA, Muller GM, Ashby MF, Hutchinson J (1994) Acta Metall 42(2):475CrossRefGoogle Scholar
  30. 30.
    Gao H, Huang Y, Nix WD, Hutchinson JW (1999) J Mech Phys Solids 47(6):1239Google Scholar
  31. 31.
    Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) Int J Plast 20:753CrossRefGoogle Scholar
  32. 32.
    Wu J, Liu Z (2010) Int J Adv Manuf Technol 46:143. doi:10.1007/s00170-009-2049-0 CrossRefGoogle Scholar
  33. 33.
    Mishra M, Egberts P, Bennewitz R, Szlufarska I (2012) Phys Rev B 86(4):045452CrossRefGoogle Scholar
  34. 34.
    McGeough J (2002) Micromachining of engineering materials. Marcel Dekker Inc., New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Materials Science ProgramUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Materials Science & EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations