Skip to main content
Log in

Conduction mechanisms in Si-LiNbO3 heterostructures grown by ion-beam sputtering method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The polycrystalline films LiNbO3 on the substrates (001) Si with the spontaneous orientation of grains are developed by the ion-beam sputtering method. The mechanisms of conductivity in the interval of temperatures T = 90–400 K are investigated by the method of the current–voltage characteristics. The initial site of the current–voltage characteristics is defined by the properties of contact Si-LiNbO3 and is described within the framework of Fowler–Nordheim tunneling and Richardson–Schottky emission. At the high voltage, the conductivity is defined by the volume of the film LiNbO3 and is described by the thermo-assisted tunneling of the electrons through the intercrystalline barriers with the height φb = 0.7 eV. The parameters of the traps presented in the band gap of LiNbO3 are defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee T-H, Hwang F-T, Lee C-T, Lee H-Y (2007) Mater Sci Eng 136:92

    Article  CAS  Google Scholar 

  2. Park S-K, Baek M-S, Bae S-C, Kwon S-Y, Kim J-H, Kim K-W (1999) Jpn J Appl Phys 38:6483

    Article  CAS  Google Scholar 

  3. Lim D-G, Jang B-S, Yi J (2000) In: Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics 2000, ISAF 2000, vol 2, p 1013

  4. Iyevlev V, Kostyuchenko A, Sumets M, Vakhtel V (2011) J Mater Sci: Mater Electron 22:1258

    Article  CAS  Google Scholar 

  5. Chenti M-T, Bouyssou E, Ventura L, Anceau C (2009) J Appl Phys 105:061605

    Article  Google Scholar 

  6. Damjanovic D (1998) Rep Prog Phys 61:1267

    Article  CAS  Google Scholar 

  7. Waser R, Klee M (1992) Integr Ferroelectr 2:23

    Article  CAS  Google Scholar 

  8. Duiker HM, Beale PD, Scott JF, Paz de Araujo CA, Melnick BM, Cuchiaro JD, McMillan LD (1990) J Appl Phys 68:5783

    Article  CAS  Google Scholar 

  9. Scott JF, Paz de Araujo CA, Melnick BM, McMillan LD, Zuleeg R (1991) J Appl Phys 70:382

    Article  CAS  Google Scholar 

  10. Yoo IK, Desu SB (1992) Phys Status Solidi A 133:565

    Article  Google Scholar 

  11. Sze SM (1969) Physics of semiconductor devices. Wiley Inter-Science, New York, p 812

    Google Scholar 

  12. Maissel LI, Glang R (1983) Handbook of thin film technology. McGraw Hill Book Company, New York

    Google Scholar 

  13. Simmons JG (1965) Phys Rev Lett 15:967

    Article  Google Scholar 

  14. Padovani FA, Stratton R (1966) Solid State Electron 9:695

    Article  Google Scholar 

  15. Ponce MA, Bueno PR, Varela J, Castro MS, Aldao CM (2008) J Mater Sci: Mater Electron 19:1169

    Article  CAS  Google Scholar 

  16. Nyamhere C, Das AGM, Auret FD, Hayes C M (2008) J Phys: Conf Ser 100:042004

    Article  Google Scholar 

  17. Knack S, Weber J (2002) Phys Rev B 65:165203-1

    Article  Google Scholar 

  18. Karachevtseva LA, Lytvynenko OA, Malovichko EA, Sobolev VD, Stronska OJ (2001) Semicond Phys Quantum Electron Optoelectron 4:40

    CAS  Google Scholar 

  19. Ievlev VM, Sumets MP, Kostyuchenko AV (2012) Mater Sci Forum 700:53

    Article  Google Scholar 

  20. Iyevlev V, Kostyuchenko A, Sumets M (2011) Proc SPIE 7747:77471J-1

    Google Scholar 

  21. Simoes AZ, Gonza′lez AHM, Ries A, Zaghete MA, Stojanovic BD, Varela JA (2003) Mater Charact 50:239

    Article  CAS  Google Scholar 

  22. Easwaran N, Balasubramanian C, Narayandass SAK, Mangalaraj D (1999) Phys Status Solidi A 129:443

    Article  Google Scholar 

  23. Shandilya S, Tomar M, Sreenivas K, Gupta V (2009) J Appl Phys 105(9):094105

    Article  Google Scholar 

  24. Iyevlev V, Sumets M, Kostyuchenko A (2012) J Mater Sci: Mater Electron 23:913

    Article  CAS  Google Scholar 

  25. Liu B-C, Liu C-H, Fu Z-X, Bo Y (2009) Chin Phys Lett 26:117101-1

    Google Scholar 

Download references

Acknowledgements

The authors express gratitude to Professor Bezryadin N.N. (Voronezh State University of Engineering Technologies) for valuable discussions on the contents of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sumets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ievlev, V., Sumets, M. & Kostyuchenko, A. Conduction mechanisms in Si-LiNbO3 heterostructures grown by ion-beam sputtering method. J Mater Sci 48, 1562–1570 (2013). https://doi.org/10.1007/s10853-012-6912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6912-2

Keywords

Navigation