Skip to main content
Log in

Imperfection of microstructural control in MgB2 superconducting tapes fabricated using an in-situ powder-in-tube process: toward practical applications

  • EM in Industry
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MgB2 is a promising superconductor for future applications to superconduct wires and tapes used at the liquid hydrogen temperature (20 K). Because the maximal superconducting current (critical current) in MgB2 depends on its microstructure, an “in-situ” process to fabricate MgB2 based on a reaction between Mg and B is effective in controlling the microstructure. However, the critical current in the fabricated MgB2 wires and tapes is not sufficiently high for practical use. This may be attributed to the imperfectness of the microstructural control in MgB2 wires and tapes. In this paper, we will discuss the microstructural features of MgB2 tapes fabricated using a typical in-situ powder-in-tube process. By observing the early stage of microstructural evolution in detail, we can gain insights into the next strategy for improving the microstructure of MgB2 tapes with respect to their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Nature 410:63

    Article  CAS  Google Scholar 

  2. Kumakura H, Kitaguchi H, Matsumoto A, Hatakeyama H (2004) Appl Phys Lett 84:3669

    Article  CAS  Google Scholar 

  3. Matsumoto A, Kumakura H, Kitaguchi H, Senkowicz BJ, Jewel MC, Hellstrom EE, Zhu Y, Voyles PM, Larbalestier DC (2006) Appl Phys Lett 89:132508

    Article  Google Scholar 

  4. Muzzi L, Chiarelli S, Corte AD, Di Zenobio A, Moroni M, Rufoloni A, Vannozzi A, Salpietro E, Vostner A (2006) IEEE Trans Appl Supercond 16:1253

    Article  CAS  Google Scholar 

  5. Matsumoto A, Kobayashi Y, Takahashi K, Kumakura H, Kitaguchi H (2008) Appl Phys Express 1:021702

    Article  Google Scholar 

  6. Pogrebnyakov AV, Xi XX, Redwing JM, Vaithyanathan V, Schlom DG, Soukiassian A, Mi SB, Jia CL, Giencke JE, Eom CB, Chen J, Hu YF, Cui Y, Li Q (2004) Appl Phys Lett 85:2017

    Article  CAS  Google Scholar 

  7. Kim JH, Oh S, Heo YU, Hata S, Kumakura H, Matsumoto A, Mitsuhara M, Choi S, Shimada Y, Maeda M, MacManus-Driscoll JL, Dou SX (2012) NPG Asia Mater 4:e3

    Article  Google Scholar 

  8. Hata S, Yoshidome T, Sosiati H, Tomokiyo Y, Kuwano N, Matsumoto A, Kitaguchi H, Kumakura H (2006) Supercond Sci Technol 19:161

    Article  CAS  Google Scholar 

  9. Yuzuriha N, Sosiati H, Hata S, Kuwano N, Yamada H, Uchiyama N, Matsumoto A, Kitaguchi H, Kumakura H (2008) J Phys: Conf Ser 97:012277

    Article  Google Scholar 

  10. Shimada Y, Kubota Y, Hata S, Ikeda K, Nakashima H, Matsumoto A, Togano K, Hur J, Kumakura H (2011) IEEE Trans Appl Supercond 21:2668

    Article  CAS  Google Scholar 

  11. Shimada Y, Kubota Y, Hata S, Ikeda K, Nakashima H, Matsumoto A, Togano K, Kumakura H (2011) Phys C 471:1137

    Article  CAS  Google Scholar 

  12. Sosiati H, Hata S, Kuwano N, Tomokiyo Y, Matsumoto A, Fukutomi M, Kitaguchi H, Komori K, Kumakura H (2004) Phys C 412–414:1376

    Article  Google Scholar 

  13. Sosiati H, Hata S, Kuwano N, Tomokiyo Y, Kitaguchi H, Doi T, Yamamoto H, Matsumoto A, Saitoh K, Kumakura H (2005) Supercond Sci Technol 18:1275

    Article  CAS  Google Scholar 

  14. Ohashi T, Hata S, Ikeda K, Nakashima H, Yamamoto A, Shimoyama J, Horii S, Kishio K (2008) J Cryog Soc Jpn 43:342

    Article  CAS  Google Scholar 

  15. Shimada Y, Ohashi T, Hata S, Ikeda K, Nakashima H, Mochizuki T, Shimoyama J, Horii S, Kishio K (2009) J Cryog Soc Jpn 44:613

    Article  CAS  Google Scholar 

  16. Fuji H, Togano K, Kumakura H (2002) Supercond Sci Technol 15:1571

    Article  Google Scholar 

  17. Dou SX, Soltanian S, Horvat J, Wang XL, Zhou SH, Ionescu M, Liu HK, Munroe P, Tomsic M (2002) Appl Phys Lett 81:3419

    Article  CAS  Google Scholar 

  18. Hata S, Sosiati H, Kuwano N, Itakura M, Nakano T, Umakoshi Y (2006) J Electron Microsc 55:23

    Article  CAS  Google Scholar 

  19. Zhu Y, Pogrebnyakov AV, Wilke RH, Chen K, Xi XX, Redwing JM, Zhuang CG, Feng QR, Gan ZZ, Singh RK, Shen Y, Newman N, Rowell JM, Hunte F, Jaroszynski J, Larbalestier DC, Baily SA, Balakirev FF, Voyles PM (2010) Supercond Sci Technol 23:095008

    Article  Google Scholar 

  20. Yamamoto A, Shimoyama J, Kishio K, Matsushita T (2007) Supercond Sci Technol 20:658

    Article  CAS  Google Scholar 

  21. Matsushita T, Kiuchi M, Yamamoto A, Shimoyama J, Kishio K (2008) Supercond Sci Technol 21:015008

    Article  Google Scholar 

  22. Eom CB, Lee MK, Choi JH, Belenky LJ, Song X, Cooley LD, Naus MT, Patnaik S, Jiang J, Rikel M, Polyanskii A, Gurevich A, Cai XY, Bu SD, Babcock SE, Hellstrom EE, Larbalestier DC, Rogado N, Regan KA, Hayward MA, He T, Slusky JS, Inumaru K, Haas MK, Cava RJ (2001) Nature 411:558

    Article  CAS  Google Scholar 

  23. Paik B, Jones IP, Walton A, Mann V, Book D, Harris IR (2010) Philos Mag Lett 90:1

    Article  CAS  Google Scholar 

  24. Matsumoto A, Kumakura H, Kitaguchi H, Hatakeyama H (2003) Supercond Sci Technol 16:926

    Article  CAS  Google Scholar 

  25. Zhu Y, Matsumoto A, Senkowicz BJ, Kumakura H, Kitaguchi H, Jewell MC, Hellstrom EE, Larbalestier DC, Voyles PM (2007) J Appl Phys 102:013913

    Article  Google Scholar 

  26. Shimada Y, Ohashi T, Hata S, Ikeda K, Nakashima H, Mochizuki T, Shimoyama J, Horii S, Kishio K (2009) J Cryog Soc Jpn 44:613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The electron microscopy observations in this study were carried out at Research Laboratory for High Voltage Electron Microscopy in Kyushu University, in the framework of the “Nanotechnology Network,” sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This study was also partly supported by Grants-in-Aid by JSPS and MEXT, Japan. The authors would like to express their sincere gratitude to Prof. Hiroyasu Saka for his kind invitation to submit this paper to the Special Issue of “EM in Industry.” The author would also like to thank Tetsuya Ohashi, Naoya Yuzuriha, and Takeshi Yoshidome for their kind help with the electron microscopy observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hata, S., Sosiati, H., Shimada, Y. et al. Imperfection of microstructural control in MgB2 superconducting tapes fabricated using an in-situ powder-in-tube process: toward practical applications. J Mater Sci 48, 132–139 (2013). https://doi.org/10.1007/s10853-012-6901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6901-5

Keywords

Navigation