Skip to main content
Log in

Microstructure and texture evolution in Mg–1 %Mn–Sr alloys during extrusion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructure and texture evolution in Mg–1 %Mn–Sr alloys during extrusion has been investigated. At 350 °C, the extrusion of Mg–1 %Mn (M1) alloy exhibits the progressive formation of basal texture from the undeformed zone to the die opening. The extruded microstructure of M1 consists of recrystallized grains nucleated by grain boundary bulging and elongated parent grains along with extensive twinning. At 350 °C, the extrusion of M1–1.6Sr alloy results in progressive elongation of Mg–Sr precipitates in the form of stringers from the undeformed zone to the die opening. The final extruded microstructure of this alloy shows extensive recrystallization occurring at the intermetallic stringers by particle-stimulated nucleation (PSN). M1–(0.3–1.6)%Sr alloys display weaker textures due to PSN which creates new grains with random orientations. At 250 °C, the extrusion of M1 creates necklace of small recrystallized grains around large elongated parent grains. M1–1.6Sr alloy extruded at 250 °C exhibits continuous dynamic recrystallization (CDRX) in the Mg matrix and PSN at Mg–Sr precipitates. PSN is less extensive at lower temperature. Both CDRX and PSN grains have random orientations, and therefore, alloy develops random texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dillamore IL, Roberts WT (1965) Metall Rev 10(39):271

    Article  CAS  Google Scholar 

  2. Becerra A, Pekguleryuz M (2009) J Mater Res 24(5):1722

    Article  CAS  Google Scholar 

  3. Bohlen J, Yi SB, Swiostek J, Letzig D, Brokmeier HG, Kainer KU (2005) Scripta Mater 52:259

    Article  Google Scholar 

  4. Kleiner S, Uggowitzer PJ (2004) Mater Sci Eng A 379(1–2):258

    Google Scholar 

  5. McQueen HJ, Pekguleryuz M (1992) In: Mordike B, Hehmann F (eds) Magnesium alloys and their applications. DGM, Munich, p 101

    Google Scholar 

  6. Stanford N, Barnett MR (2008) Scripta Mater 58:179

    Article  CAS  Google Scholar 

  7. Barnett MR, Nave MD, Bettles CJ (2004) Mater Sci Eng A 386:205

    Google Scholar 

  8. Bohlen J, Nurnberg MR, Senn JW, Letzig D, Agnew SR (2007) Acta Mater 55:2101

    Article  CAS  Google Scholar 

  9. Mackenzie LWF, Davis B, Humphreys FJ, Lorimer GW (2007) Mater Sci Technol 23:1173

    Article  CAS  Google Scholar 

  10. Ball EA, Prangnell PB (1994) Scripta Metall Mater 31:111

    Article  CAS  Google Scholar 

  11. Bohlen J, Yi S, Letzig D, Kainer KU (2010) Mater Sci Eng A 527:7092

    Article  Google Scholar 

  12. Mackenzie LWF, Davis B, Humphreys FJ, Lorimer GW (2007) Mater Sci Technol 23(10):1173

    Article  CAS  Google Scholar 

  13. Humphreys FJ, Hatherly M (1996) Recrystallization and Related Annealing Phenomena. Pergamon Press, Oxford

    Google Scholar 

  14. Robson JD, Henry DT, Davis B (2009) Acta Mater 57:2739

    Article  CAS  Google Scholar 

  15. Yang M, Pan F, Cheng R, Tang A (2008) Mater Sci Eng A 491:440

    Article  Google Scholar 

  16. Pan F, Yang M, Shen J, Wu L (2011) Mater Sci Eng A 528(4292–4299):1333

    Google Scholar 

  17. Cheng R-J, Pan F-S, Yang M-B, Tang A-T (2008) Trans Nonferrous Met Soc China 18(2008):50

    Article  Google Scholar 

  18. Zeng XQ, Wang YX, Ding WJ, Luo A, Sachdev AK (2006) Metall Mater Trans A 37:1333

    Article  Google Scholar 

  19. Baril E, Labelle P, Pekguleryuz MO (2003) J Metals (JOM-US) TMS 55:34

    CAS  Google Scholar 

  20. Pekguleryuz M, Baril E, Labelle P, Argo D (2003) J Adv Mater 35(3):32

    CAS  Google Scholar 

  21. Borkar H, Hoseini M, Pekguleryuz M (2012) Mater Sci Eng A 537:49

    Article  CAS  Google Scholar 

  22. Sadeghi A, Pekguleryuz M (2011) Mater Sci Eng A 528:1678

    Article  Google Scholar 

  23. Masoumi M, Pekguleryuz M (2011) Mater Sci Eng A 529:207

    Article  CAS  Google Scholar 

  24. Mayers MA, Vöhringer O, Lubarda VA (2001) Acta Mater 49:4025

    Article  Google Scholar 

  25. Borkar H, Hoseini M, Pekguleryuz M (2012) Mater Sci Eng A 549:168

    Article  CAS  Google Scholar 

  26. Martin É, Mishra RK, Jonas JJ (2011) In: Czerwinski F (ed) Magnesium alloys—design, processing and properties. InTech, pp 21–42

  27. Li S-B, Wang Y-Q, Zheng M-Y, Wu K (2004) Trans Nonferrous Met Soc China 14(2):306

    CAS  Google Scholar 

  28. Bhattacharya R, Wynne BP (2011) Mater Sci Technol 27(2):461

    Article  CAS  Google Scholar 

  29. Al-Samman T, Gottstein G (2008) Mater Sci Eng A 490:411

    Article  Google Scholar 

  30. Yin DL, Zhang KF, Wang GF, Han WB (2007) Mater Sci Eng A 392:320

    Google Scholar 

Download references

Acknowledgements

This work was supported by the strategic project grant from Natural Sciences and Engineering Research Council (NSERC) of Canada with the industrial support of Applied Magnesium (formerly Timminco). We thank Dr. Majid Hoseini for his valuable help in texture analysis. We also thank Pierre Vermette for his useful contribution in alloy synthesis. One of the authors, Hemant Borkar, would like to thank McGill University for their financial support through MEDA (McGill Engineering Doctoral Award) award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Borkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borkar, H., Pekguleryuz, M. Microstructure and texture evolution in Mg–1 %Mn–Sr alloys during extrusion. J Mater Sci 48, 1436–1447 (2013). https://doi.org/10.1007/s10853-012-6896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6896-y

Keywords

Navigation