Skip to main content
Log in

On the importance of the structure in the electrical conductivity of fishbone carbon nanofibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanofibers (CNFs) have a remarkable electrical conductivity resulting highly attractive for different applications such as composites or electronics due to their high quality/price ratio. Although it is known that their graphitic character provides a high conductivity, very little is known about the influence of the nanofibers structure on that property. In this study, CNFs characterized by different physical properties are prepared at diverse synthesis temperatures within a range (550–750 °C) in which significant structural and dimensional changes are accomplished and homogeneous nanofiber growth takes place. The electrical conductivity is determined on the powdery as-grown materials modifying the compaction degree by applying pressure. Because of a combination of structural features, the apparent electrical conductivity increases with synthesis temperature of CNFs, ranging from 50 S m−1 for the worst conducting CNFs at a low compaction degree (25 % of solid volume fraction) to 3 × 103 S m−1 for the best conducting CNFs at a high compaction degree (60 % of solid volume fraction). Further analysis is carried out applying the percolation theory to analyze the experimental data and the results suggest that both the orientation of the graphenes and the filament diameter distribution play a determining role in the intrinsic electrical conductivity with values in the interval 1.5 × 103 to 1.3 × 104 S m−1. These intrinsic values of electrical conductivity are found between one and two orders of magnitude higher than that of the powder, highlighting the also important effect of porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Endo M, Kroto HW (1992) J Phys Chem 96:6941–6944

    Article  CAS  Google Scholar 

  2. Chung DDL (2004) J Mater Sci 39:2645–2661. doi: 10.1023/B:JMSC.0000021439.18202.ea

    Google Scholar 

  3. Al-Saleh MH, Sundararaj U (2009) Carbon 47:2–22

    Article  CAS  Google Scholar 

  4. Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) Comp Sci Technol 67:1709–1718

    Article  CAS  Google Scholar 

  5. Kubota S, Nishikiori H, Tanaka N, Endo M, Fujii T (2005) J Phys Chem B 109:23170–23174

    Article  CAS  Google Scholar 

  6. Liu Q, Ren W, Chen ZG, Yin L, Li F, Cong H, Cheng HM (2009) Carbon 47:731–736

    Article  CAS  Google Scholar 

  7. Huang J, Liu Y, Hou H, You T (2008) Biosens Bioelectron 24:632–637

    Article  CAS  Google Scholar 

  8. Kim C (2005) J Power Sources 142:382–388

    Article  CAS  Google Scholar 

  9. Xuyen NT, Ra EJ, Geng HZ, Kim KK, An KH, Lee YH (2007) J Phys Chem B 111:11350–11353

    Article  CAS  Google Scholar 

  10. Barranco V, Lillo-Ródenas MA, Linares-Solano A, Oya A, Pico F, Ibáñez J, Agullo-Rueda F, Amarilla JM, Rojo JM (2010) J Phys Chem C 114:10302–10307

    Article  CAS  Google Scholar 

  11. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Carbon 39:1287–1297

    Article  CAS  Google Scholar 

  12. Antolini E (2009) Appl Catal. B 88:1–24

    CAS  Google Scholar 

  13. Shao Y, Liu J, Wang Y, Lin Y (2009) J Mater Chem 19:46–59

    Article  CAS  Google Scholar 

  14. Rodríguez NM, Chambers A, Baker RTK (1995) Langmuir 11:3862–3866

    Article  Google Scholar 

  15. De Jong KP, Geus JW (2000) Catal Rev Sci Eng 42:481–510

    Article  Google Scholar 

  16. Díez-Pascual AM, Naffakh M, González-Domínguez JM, Ansón A, Martínez-Rubi Y, Martínez MT, Simard B, Gómez MA (2010) Carbon 48:3500–3511

    Article  Google Scholar 

  17. Yang DJ, Wang SG, Zhang Q, Sellin PJ, Chen G (2004) Phys Lett A 329:207–213

    Article  CAS  Google Scholar 

  18. Yang SB, Kong BS, Geng J, Jung HT (2009) J Phys Chem C 113:13658–13663

    Article  CAS  Google Scholar 

  19. Park HJ, Oh KA, Park M, Lee H (2009) J Phys Chem C 113:13070–13076

    Article  CAS  Google Scholar 

  20. Park YT, Ham AY, Grunlan JC (2010) J Phys Chem C 114:6325–6333

    Article  CAS  Google Scholar 

  21. Kim YJ, Kim YA, Chino T, Suezaki H, Endo M, Dresselhaus MS (2006) Small 2:339–345

    Article  CAS  Google Scholar 

  22. Ismagilov ZR, Shalagina AE, Podyacheva OY, Ischenko AV, Kibis LS, Boronin AI, Chesalov YA, Kochubey DI, Romanenko AI, Anikeeva OB, Buryakov TI, Tkachev EN (2009) Carbon 47:1922–1929

    Article  CAS  Google Scholar 

  23. Jiménez P, Castell P, Sainz R, Ansón A, Martínez MT, Benito AM, Maser WK (2010) J Phys Chem B 114:1579–1585

    Article  Google Scholar 

  24. Charlier JC, Issi JP (1996) J Phys Chem Solids 57:957–965

    Article  CAS  Google Scholar 

  25. Frackowiak E, Béguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  26. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  27. Kuznetsov VL, Butenko YV, Chuvilin AL, Romanenko AI, Okotrub AV (2001) Chem Phys Lett 336:397–404

    Article  CAS  Google Scholar 

  28. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  29. Sebastián D, Suelves I, Moliner R, Lázaro MJ (2010) Carbon 48:4421–4431

    Article  Google Scholar 

  30. Lázaro MJ, Sebastián D, Suelves I, Moliner R (2009) J Nanosci Nanotechnol 9:4353–4359

    Article  Google Scholar 

  31. Pinilla JL, Suelves I, Lázaro MJ, Moliner R, Palacios JM (2008) Int J Hydrogen Energy 33:2515–2524

    Article  CAS  Google Scholar 

  32. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  33. Patrick JW (1985) Porosity in carbons. Edward Arnold, London

    Google Scholar 

  34. Kuvshinov GG, Mogilnykh YI, Kuvshinov DG, Zaikovskii VI, Avdeeva LB (1998) Carbon 36:87–97

    Article  CAS  Google Scholar 

  35. Suarez-Martínez I, Grobert N, Ewels CP (2012) Carbon 50:741–747

    Article  Google Scholar 

  36. Snoeck JW, Froment GF, Fowles M (1997) J Catal 169:240–249

    Article  CAS  Google Scholar 

  37. Fenelonov VB, Derevyankin AY, Okkel LG, Avdeeva LB, Zaikovskii VI, Moroz EM, Salanov AN, Rudina NA, Lokholobov VA, Shaikhutdinov SK (1997) Carbon 35:1129–1140

    Article  CAS  Google Scholar 

  38. Celzard A, Marêché JF, Payot F, Furdin G (2002) Carbon 40:2801–2815

    Article  CAS  Google Scholar 

  39. Euler KJ (1978) J Power Sources 3:117–136

    Article  CAS  Google Scholar 

  40. Ehrburger-Dolle F, Lahaye J, Misono S (1994) Carbon 32:1363–1368

    Article  CAS  Google Scholar 

  41. Pantea D, Darmstadt H, Kaliaguine S, Roy C (2003) Appl Surf Sci 217:181–193

    Article  CAS  Google Scholar 

  42. Sebastián D, Calderón JC, González-Expósito JA, Pastor E, Martínez-Huerta MV, Suelves I, Moliner R, Lázaro MJ (2010) Int J Hydrogen Energy 35:9934–9942

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank FEDER and the Spanish MICINN for the financial support to project CTQ2011-28913-C02-01. The authors also acknowledge the support of bilateral CNR (Italy)–CSIC (Spain) joint agreement 2011–2012 (project Baglio/Lazaro 2010IT0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Lázaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebastián, D., Ruiz, A.G., Suelves, I. et al. On the importance of the structure in the electrical conductivity of fishbone carbon nanofibers. J Mater Sci 48, 1423–1435 (2013). https://doi.org/10.1007/s10853-012-6893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6893-1

Keywords

Navigation