Skip to main content
Log in

Phonon scattering enhancement in silicon nanolayers

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dimensional confinement in silicon nanowires (NWs) is well-known for enhancing phonon scattering, thus leading to a pronounced reduction of thermal conductivity κ with respect to bulk material. The effect of confinement on phonon scattering in nanolayers (NLs), however, has not been fully understood. In this work, thermal conductivity on polycrystalline silicon NLs with roughened surfaces and thicknesses ranging from 30 to 100 nm has been experimentally investigated. For measurement purposes, the nanostructures were fabricated with a dedicated surface nano-machining process, thus producing vertical silicon nanostructures suspended on Al/Si electrodes on a silicon substrate, using SiO2 as a sacrificial layer. By designing such structures in a four-terminal configuration, their κ could be determined by the current-voltage method. Boron doped silicon NLs were examined, at resistivity ranging between 2 and 10 m\(\Upomega\) cm. We found an increase of phonon scattering from the confinement, since κ decreased steadily with the thickness from values typical of thick films (around 30 W m−1 K−1) down to <15 W m−1 K−1. Compared to NWs, NLs had displayed figures of merit smaller by one order of magnitude. However, due to the larger filling factor, they were able of generating more than five times the electric power per area unit that could be obtained with high-density stacks of top-efficiency NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aksamija Z, Knezevic I (2010) Phys Rev B 82:045319

    Article  Google Scholar 

  2. Asheghi M, Touzelbaev MN, Goodson KE, Leung YK, Wong SS (1998) J Heat Transf 120(1):30

    Article  CAS  Google Scholar 

  3. Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA, Heath JR (2008) Nature 451(7175):168

    Article  CAS  Google Scholar 

  4. Carruthers JA, Geballe TH, Rosenberg HM, Ziman JM (1957) Proc R Soc Lond 238:502

    Article  CAS  Google Scholar 

  5. Cerofolini G, Ferri M, Romano E, Suriano F, Veronese G, Solmi S, Narducci D (2010) Semicond Sci Technol 25(9):095011

    Article  Google Scholar 

  6. Cerofolini GF, Ferri M, Romano E, Suriano F, Veronese GP, Solmi S, Narducci D (2011) Semicond Sci Technol 26(4):045005

    Article  Google Scholar 

  7. Delan A, Rennau M, Schulz S, Gessner T (2003) Microelectron Eng 70(2–4):280

    Article  CAS  Google Scholar 

  8. Ferri M, Suriano F, Roncaglia A, Solmi S, Cerofolini G, Romano E, Narducci D (2011) Microelectron Eng 88(6):877

    Article  CAS  Google Scholar 

  9. Glassbrenner CJ, Slack GA (1964) Phys Rev 134:A1058

    Article  Google Scholar 

  10. Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnet EC, Najarian M, Majumdar A, Yang PD (2008) Nature 451(7175):163

    Article  CAS  Google Scholar 

  11. Ju YS, Goodson KE (1999) Appl Phys Lett 74(20):3005

    Article  CAS  Google Scholar 

  12. Liu, W., Asheghi, M (2005) J Appl Phys 98(12):123523. doi:10.1063/1.2149497. URL http://link.aip.org/link/?JAP/98/123523/1

  13. Liu W, Asheghi M (2006) J Heat Transf 128(1):75

    Article  CAS  Google Scholar 

  14. Nakpathomkun N, Xu HQ, Linke H (2010) Phys Rev B 82:235428

    Article  Google Scholar 

  15. Narducci D (2011) Appl Phys Lett 99(10):102104

    Article  Google Scholar 

  16. Narducci D, Cerofolini G (2011) Dispositivo di conversione termoelettrica seebeck/peltier impiegante strati nanometrici impilati alternati di materiale conduttore e dielettrico e procedimento di fabbricazione. Italian Patent MI2011A000751

  17. Narducci D, Selezneva E, Cerofolini G, Romano E, Tonini R, Ottaviani G (2010) In: Proceedings of the 8th European thermoelectric conference, pp 141–146. Como

  18. Narducci D, Selezneva E, Arcari A, Cerofolini G, Romano E, Tonini R, Ottaviani G (2011) In: MRS Online Proceedings Library, vol 1314 Mrsf10-1314-ll05-16

  19. Telkes M (1947) J Appl Phys 18(12):1116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Narducci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narducci, D., Cerofolini, G., Ferri, M. et al. Phonon scattering enhancement in silicon nanolayers. J Mater Sci 48, 2779–2784 (2013). https://doi.org/10.1007/s10853-012-6828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6828-x

Keywords

Navigation