Skip to main content
Log in

Electronic and optical properties of (Al x Ga1−x )1−y Mn y As single crystal: a new candidate for integrated optical isolators and spintronics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have explored the electronic and optical properties of cubic (Al x Ga1−x )1−y Mn y As system using the FP-LAPW method. The unit cell has 64 atoms, so that one manganese (Mn) atom is placed in the position of gallium site, which corresponds to 3.125 % doping concentration with x = 12.5 %. Our calculations, using local density approximation + U (Hubbard parameter) scheme, predict that the ferromagnetic state for AlGaMnAs, with a magnetic moment of about 4.014 μB per Mn dopant is more favorable. Despite its electronic properties being strongly affected by inducing small amounts of Mn substitutional atoms in the cationic sublattice of AlGaAs, (Al x Ga1−x )1−y Mn y As possesses optical properties strictly less than those of Al x Ga1−x As, especially its optical conductivity at the peak 1.256 eV. The results indicate that AlGaMnAs may be a good candidate for optoelectronics when exploited in optical fiber networks, and it can still be of great interest because of its promising potential when used for spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ohno H (1998) Science 281:951

    Article  CAS  Google Scholar 

  2. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Nature 408:944

    Article  CAS  Google Scholar 

  3. Unjong Y, Nili AM, Mikelsons K, Moritz B, Moreno J, Jarrell M (2010) Phys Rev Lett 104:037201

    Article  Google Scholar 

  4. Awschalom DD, Samarth N, Loss D (eds) (2002) Semiconductor spintronics and quantum computation. Springer-Verlag, Berlin

  5. Samarth N (2004) Solid State Phys 58:1

    Article  CAS  Google Scholar 

  6. MacDonald AH et al (2005) Nat Mater 4:195

    Article  CAS  Google Scholar 

  7. Burch KS, Awschalom DD, Basov DN (2008) J Magn Magn Mater 320:3207

    Article  CAS  Google Scholar 

  8. Pesci M, Gallino F, Di Valentin C, Pacchioni G (2010) J Phys Chem C 114:1350

    Article  CAS  Google Scholar 

  9. Jungwirth T, Jairo Sinova J, Masek J, Kucera A, Mac Donald H (2006) J Mod Phys 78:809

    Article  CAS  Google Scholar 

  10. Wu RQ, Peng GW, Liu L, Feng YP, Huang ZG, Wu QY (2006) Appl Phys Lett 89:062505

    Article  Google Scholar 

  11. Hayashi T, Hashimoto Y, Katsumoto S, Iye Y (2001) Appl Phys Lett 78:1691

    Article  CAS  Google Scholar 

  12. Kuroiwa T, Yasuda T, Matsukura F, Shen A, Ohno Y, Segawa Y, Ohno H (1998) Electron Lett 34:190

    Article  CAS  Google Scholar 

  13. Ohno H, Matsukura F, Omiya T, Akiba N (1999) J Appl Phys 85:4277

    Article  CAS  Google Scholar 

  14. Ohno H, Matsukura F, Ohno Y (2002) General report semiconductor spin electronics. JSAP Int 5:4

    CAS  Google Scholar 

  15. Levy M, Scarmozzino R, Osgood RM Jr, Wolfe R, Cadieu FJ, Hedge H, Gutierrez CJ, Prinz GA (1994) J Appl Phys 75:6286

    Article  CAS  Google Scholar 

  16. Shimizu H, Tanaka M (2002) Appl Phys Lett 81:5246

    Article  CAS  Google Scholar 

  17. Zaets W, Ando K (1999) IEEE Photonics Technol Lett 11:1012

    Article  Google Scholar 

  18. Shimizu H, Miyamura M, Tanaka M (2000) J Vac Sci Technol 18:2063

    Article  CAS  Google Scholar 

  19. Akinaga H, Miyanishi S, Tanaka K, Van Roy W, Onodera K (2000) Appl Phys Lett 76:97

    Article  CAS  Google Scholar 

  20. Schulz R, Korn T, Wurstbauer U, Schuh D, Wegscheider W, Schüller C (2010) In: 29th international conference of the physics of semiconductors, AIP conference proceedings, vol 1199, p 155

  21. Van Dorpe P, Liu Z, Van Roy W, Motsnyi VF, Sawicki M, Borghs G, De Boeck J (2004) Appl Phys Lett 84:3495

    Article  Google Scholar 

  22. Myers RC, Poggio M, Stern NP, Gossard AC, Awschalom DD (2005) Phys Rev Lett 95:017204

    Article  CAS  Google Scholar 

  23. Amemiya T, Shimizu H, Hai PN, Tanaka M, Nakano Y (2007) J Magn Magn Mater 310:2161

    Article  CAS  Google Scholar 

  24. Morishita Y, Tsuboi A, Suzuki H, Sato K (1999) J Magn Soc Jpn 23:93

    Article  CAS  Google Scholar 

  25. Chiba D, Yamanouchi M, Matsukura F, Abe E, Ohno Y, Ohtani K, Ohno H (2003) J Supercond 16:179

    Article  CAS  Google Scholar 

  26. Desclaux JP (1969) Comput Phys Commun 1:216

    Article  Google Scholar 

  27. Coelling DD, Harmon BN (1977) J Phys C 10:3107

    Article  Google Scholar 

  28. Blaha P, Schwartz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave and local orbitals program for Calculating Crystal Properties, TU Wien, Austria

  29. Gao S (2003) Comput Phys Commun 153:190

    Article  CAS  Google Scholar 

  30. Schwarz K (2003) J Solid State Chem 176:319

    Article  CAS  Google Scholar 

  31. Pask JE, Yang LH, Fong CY, Pickett WE, Dag S (2003) Phys Rev B 67:224420-1

    Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  33. Takahashi NS (1993) In: Adachi S (ed) Properties of aluminium gallium arsenide, EMIS Datareviews Series No. 7, INSPEC, London, p 3

  34. Mahadevan P, Zunger A (2003) Phys Rev B 68:075202

    Google Scholar 

  35. Sanvito S, Hill NA (2000) Phys Rev B 62

  36. Adachi S (2009) Properties of semiconductor alloys: Group-IV, III–V and II–VI semiconductors, edition first published 2009. Wiley, New York

    Google Scholar 

  37. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815

    Article  CAS  Google Scholar 

  38. Shirai M, Ogawa T, Kitagawa I, Suzuki N (1998) J Magn Magn Mater 177–181:1383

    Article  Google Scholar 

  39. Park JH, Kwon SK, Min BI (2000) Phys B Cond Matt 281–282:703

    Article  Google Scholar 

  40. De Teresa JM, Barthélémy A, Fert A, Contour JP, Montaigne F, Seneor P (1999) Science 286

  41. van Aken PA, Hoche T, Heyroth F, Keding R, Uecker R (2004) Phys Chem Miner 31:543

    Google Scholar 

  42. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  43. Schattschneider P, Jouffrey B (1995) In: Reimer L (ed) Energy-filtering transmission electron microscopy. Springer, Berlin, p 151

    Google Scholar 

  44. Raether H (1980) Excitation of plasmons and interband transitions by electrons. Springer, Berlin

    Google Scholar 

  45. Schleife A, Rödl C, Fuchs F, Furthmüller J, Bechstedt F (2009) Phys Rev B 80:035112

    Article  Google Scholar 

  46. Reshak AH, Kityk IV, Auluck S (2010) J Phys Chem B 114:16705

    Article  CAS  Google Scholar 

  47. Reshak AH, Auluck S, Kityk IV, Chen X (2009) J Phys Chem B 113:9161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Y.A.) would like to acknowledge the FRGS Grant #: 9003-00249 & 9003-00255 and TWAS-Italy, of his visit to JUST, Jordan under TWAS-UNESCO Associateship for full financial and technical supports, respectively. For Ali H. Reshak, his study was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. The School of Materials Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Al-Douri or Ali H. Reshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merabet, B., Al-Douri, Y., Abid, H. et al. Electronic and optical properties of (Al x Ga1−x )1−y Mn y As single crystal: a new candidate for integrated optical isolators and spintronics. J Mater Sci 48, 758–764 (2013). https://doi.org/10.1007/s10853-012-6792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6792-5

Keywords

Navigation