Journal of Materials Science

, Volume 48, Issue 2, pp 665–673 | Cite as

Synthesis and characterization of iron-substituted hydroxyapatite via a simple ion-exchange procedure

  • Erica R. Kramer
  • Aimee M. Morey
  • Margo Staruch
  • Steven L. Suib
  • Menka Jain
  • Joseph I. Budnick
  • Mei Wei
Article

Abstract

Hydroxyapatite (HA), the main inorganic component of natural bones, is widely studied as a biomaterial due to its excellent biocompatibility and osteoinductivity. The crystal structure of HA lends itself to a wide variety of substitutions and ion doping, which allows for tailoring of material properties. In this study, iron-doped HA was synthesized via a simple ion-exchange procedure and characterized thoroughly for crystal structure and phase purity using X-ray diffraction, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and Fourier transform infrared spectroscopy. Magnetic properties were studied using vibrating sample magnetometer and superconducting quantum interference device analysis. Ion-exchange was attempted using both ferric and ferrous chloride iron solutions, but a substitution was only achieved using ferric chloride solution. The results showed that after iron substitution the powder retained characteristic apatite crystal structure and functional groups, but the iron-doped samples displayed paramagnetic properties, as opposed to the diamagnetism of pure HA. The effect of soaking time on iron content was also examined, and collectively X-ray diffraction and inductively coupled plasma atomic emission spectroscopy results suggested that an increase in soaking time led to an increase in iron content in the sample powder. Iron-substituted HA nanoparticles, a biomaterial with magnetic properties, could be a promising biomaterial to be used in a variety of biomedical fields, including magnetic imaging, drug delivery, or hyperthermia-based cancer treatments.

References

  1. 1.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) J Bone Miner Res 22:465CrossRefGoogle Scholar
  2. 2.
    Bowden VR, Greenberg CS (2010) Children and their families: the continuum of care. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  3. 3.
    Ratner BD, Hoffman AS, Schoen FJ, Lemonds JE (2004) Biomaterials sciences: an introduction to materials in medicine. Elsevier, San DiegoGoogle Scholar
  4. 4.
    Martini FH (2006) Fundamentals of anatomy & physiology. Pearson-Benjamin Cummings, San FranciscoGoogle Scholar
  5. 5.
    Weiner S, Wagner HD (1998) Annu Rev Mater Res 28:271CrossRefGoogle Scholar
  6. 6.
    Park JB, Bronzino JD (2003) Biomaterials principles and applications. CRC Press, Boca RatonGoogle Scholar
  7. 7.
    Kay MI, Young RA (1964) Nature 204:1050CrossRefGoogle Scholar
  8. 8.
    Qu H, Vasiliev AV, Aindow M, Wei M (2005) J Mater Sci Mater Med 16:447CrossRefGoogle Scholar
  9. 9.
    Jiang M, Terra J, Rossi AM, Morales MA, Baggio Saitovitch EM, Ellis DE (2002) Phys Rev B 66:224107CrossRefGoogle Scholar
  10. 10.
    Wang J, Nonami T, Yubata K (2008) J Mater Sci Mater Med 19:2663CrossRefGoogle Scholar
  11. 11.
    Wu HA, Wang TW, Sun JS, Wang WH (2007) Nanotechnology 18:9Google Scholar
  12. 12.
    Morrissey R, Rodriguez-Lorenzo LM, Gross KA (2005) J Mater Sci Mater Med 16:387CrossRefGoogle Scholar
  13. 13.
    Gross KA, Jackson R, Cashion JD, Rodriguez-Lorenzo LM (2002) Eur Cells Mater 3:114Google Scholar
  14. 14.
    Prakash KH, Kumar R, Ooi CP, Sritharan T, Cheang P, Khor KA (2006) Mol Cell Biol 3:177Google Scholar
  15. 15.
    Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Hamand MF, Rey C (2005) J Mater Sci Mater Med 16:405CrossRefGoogle Scholar
  16. 16.
    Biji A, Boanini E, Capuccini C, Gazzano M (2007) Inorg Chim Acta 360:1009CrossRefGoogle Scholar
  17. 17.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:R167CrossRefGoogle Scholar
  18. 18.
    Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Nanomedicine 1:157CrossRefGoogle Scholar
  19. 19.
    Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Biomaterials 29:4012CrossRefGoogle Scholar
  20. 20.
    Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222CrossRefGoogle Scholar
  21. 21.
    Gupta AK, Gupta M (2005) Biomaterials 26:3995CrossRefGoogle Scholar
  22. 22.
    Li Y, Nam CT, Ooi CP (2009) J Phys 187:012024Google Scholar
  23. 23.
    Kothapelli C, Wei M, Vasiliev A, Shaw MT (2004) Acta Mater 52:5655CrossRefGoogle Scholar
  24. 24.
    Patel N, Best SM, Bonfield W (2005) J Aust Ceram Soc 41:1Google Scholar
  25. 25.
    Goldfarb D, Bernardo M, Strohmaier KG, Vaughan DEW, Thomann H (1994) J Am Chem Soc 116:6344CrossRefGoogle Scholar
  26. 26.
    Pon-On W, Meejoo S, Tang I-M (2008) Mater Res Bull 43:2137CrossRefGoogle Scholar
  27. 27.
    Low HR, Phonthammachai N, Maignon A, Stewart GA, Bastow TJ, Ma LL, White TJ (2008) Inorg Chem 47:11774CrossRefGoogle Scholar
  28. 28.
    Ennas G, Musinu A, Piccaluga G, Zedda D, Gatteschi D, Sangregorio C, Stanger JL, Concas G, Spano G (1998) Chem Mater 10:495CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Erica R. Kramer
    • 1
  • Aimee M. Morey
    • 2
  • Margo Staruch
    • 3
  • Steven L. Suib
    • 2
  • Menka Jain
    • 3
  • Joseph I. Budnick
    • 3
  • Mei Wei
    • 1
  1. 1.Department of Materials Science and EngineeringInstitute of Materials Science, University of ConnecticutStorrsUSA
  2. 2.Department of ChemistryUniversity of ConnecticutStorrsUSA
  3. 3.Department of PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations