Skip to main content
Log in

Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the morphological, electrical, and rheological properties of the poly(propylene carbonate) (PPC)/poly(lactic acid) (PLA)/multi-walled carbon nanotube (MWCNT) composites were investigated. From the results of transmission electron microscopy of the PPC/PLA/MWCNT composites, the MWCNT preferred to locate more in the PPC phase than in the PLA phase. This maybe due to the lower interfacial tension of the PPC/MWCNT composites compared to that of the PLA/MWCNT composites. The electrical conductivities of the PPC/PLA/MWCNT composites were higher than those of the PPC/MWCNT and the PLA/MWCNT composites, which was likely due to the selective localization of the MWCNT in the PPC phase (continuous phase). From the results of the complex viscosity of the composites, the ratio of increasing the complex viscosity of the PPC/MWCNT composites with the MWCNT content was higher than that of the PLA/MWCNT composites. This is maybe due to the fact that the MWCNT dispersion in the PPC phase was higher than in the PLA phase. The results from the morphology, electrical conductivity, and complex viscosity of the PPC/PLA/MWCNT composites suggest that the selective localization of the MWCNT in the PPC phase can improve the conductive path and increase the electrical conductivity of the PPC/PLA/MWCNT composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Shimizu H (2009) ACS Appl Mater Interfaces 1:1650

    Article  CAS  Google Scholar 

  2. Li B, Yu J, Jung J, Ree M (1999) Polym Degrad Stab 65:161

    Article  CAS  Google Scholar 

  3. Jiao J, Wang SJ, Xiao M, Xu Y, Meng YZ (2007) Polym Eng Sci 47:174

    Article  CAS  Google Scholar 

  4. Du LC, Meng YZ, Wang SJ, Tjong SC (2004) J Appl Polym Sci 92:1840

    Article  CAS  Google Scholar 

  5. Ma X, Yu J, Wang N (2006) J Polym Sci 44:94

    CAS  Google Scholar 

  6. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:23

    Article  Google Scholar 

  7. Park DH, Kim MS, Yang JH, Lee DJ, Kim KN, Hong BK, Kim WN (2011) Macromol Res 19:105

    Article  CAS  Google Scholar 

  8. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN (2010) Macromol Res 18:583

    Article  CAS  Google Scholar 

  9. Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN (2011) Polym Degrad Stab 96:553

    Article  CAS  Google Scholar 

  10. Hamad K, Kaseem M, Deri F (2011) J Mater Sci 46:3013. doi:10.1007/s10853-010-5179-8

    Article  CAS  Google Scholar 

  11. Nayak GC, Rajasekar R, Das CK (2011) J Mater Sci 46:2050. doi:10.1007/s10853-010-5037-8

    Article  CAS  Google Scholar 

  12. Gajria AM, Davé V, Gross RA, McCarthy SP (1996) Polymer 37:437

    Article  CAS  Google Scholar 

  13. Papanicolaou G, Papaefthymiou K, Koutsomitopoulou A, Portan D, Zaoutsos S (2012) J Mater Sci 47:350. doi:10.1007/s10853-011-5804-1

    Article  CAS  Google Scholar 

  14. Roy N, Bhowmick A (2012) J Mater Sci 47:272. doi:10.1007/s10853-011-5795-y

    Article  CAS  Google Scholar 

  15. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN (2006) Polymer 47:4434

    Article  CAS  Google Scholar 

  16. Han MS, Lee YK, Lee HS, Yoon CH, Kim WN (2009) Chem Eng Sci 64:4649

    Article  CAS  Google Scholar 

  17. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  18. Kao CC, Young RJ (2010) J Mater Sci 45:1425. doi:10.1007/s10853-009-3947-0

    Article  CAS  Google Scholar 

  19. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP (2006) Polymer 47:7740

    Article  CAS  Google Scholar 

  20. Jeong N, Han SO, Kim H, Kim HS, You YJ (2011) J Mater Sci 46:2041. doi:10.1007/s10853-010-5036-9

    Article  CAS  Google Scholar 

  21. You KM, Park SS, Lee CS, Kim JM, Park GP, Kim WN (2011) J Mater Sci 46:6850. doi:10.1007/s10853-011-5645-y

    Article  CAS  Google Scholar 

  22. Bak H, Yun YS, Cho SY, Kang MK, Jin HJ (2011) Macromol Res 19:227

    Article  CAS  Google Scholar 

  23. Han MS, Lee YK, Yun CH, Lee HS, Lee CJ, Kim WN (2011) Synth Met 161:1629

    Article  CAS  Google Scholar 

  24. Sung YT, Kum CK, Lee HS, Byon NS, Yoon HG, Kim WN (2005) Polymer 46:5656

    Article  CAS  Google Scholar 

  25. Sumfleth J, Buschhorn S, Schulte K (2011) J Mater Sci 46:659. doi:10.1007/s10853-010-4788-6

    Article  CAS  Google Scholar 

  26. Fenouillot F, Cassagnau P, Majeste JC (2009) Polymer 50:1333

    Article  CAS  Google Scholar 

  27. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25:265

    Article  CAS  Google Scholar 

  28. Gubbels F, Jerom R, Teyssie Ph, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Macromolecules 27:1972

    Article  CAS  Google Scholar 

  29. Lee YK, Jang SH, Kim MS, Kim WN, Yoon HG, Kim ST, Lee JD (2010) Macromol Res 18:241

    Article  CAS  Google Scholar 

  30. Wu S (1982) Polymer interface and adhesion. Marcel Dekker Inc., New York

    Google Scholar 

  31. Nuriel S, Liu L, Barber AH, Wagner HD (2005) Chem Phys Lett 404:263

    Article  CAS  Google Scholar 

  32. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  33. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  34. Tai NH, Yeh MK, Liu JH (2004) Carbon 42:2735

    Article  Google Scholar 

  35. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37:9048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2010-0012831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Nyon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D.H., Kan, T.G., Lee, Y.K. et al. Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites. J Mater Sci 48, 481–488 (2013). https://doi.org/10.1007/s10853-012-6762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6762-y

Keywords

Navigation