Skip to main content
Log in

Hot working behavior of AZ31 and ME21 magnesium alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The plastic deformation and recrystallization behavior of the commercial magnesium alloys AZ31 and ME21 were analyzed in a wide temperature range. Using the conventional hyperbolic sine equation the flow stress dependence on temperature and strain rate was modeled. The activation energy for plastic deformation significantly increased with increasing temperature and delivered values above 180 kJmol−1 for both alloys in the very high-temperature regime (400–550 °C). At lower temperatures (250–400 °C) the activation energy of the AZ31 alloy was approximately 108 kJmol−1 considering the peak stress as well as 120 kJmol−1 considering the flow stress at a strain of 0.5. The stress exponent varied in a range between 4.5 and 6.5. During the high-temperature compression tests a partial recrystallized microstructure was formed, which was distinctly different in AZ31 compared to ME21 due to the different onset of dynamic recrystallization (DRX) mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ion SE, Humphreys FJ, White SH (1982) Acta Metall 30:1909

    Article  CAS  Google Scholar 

  2. Partridge PG (1967) Metall Rev 12:169

    Article  CAS  Google Scholar 

  3. Meyers MA, Vöhringer O, Lubarda VA (2001) Acta Mater 49:4025

    Article  CAS  Google Scholar 

  4. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Acta Mater 52:5093

    Article  CAS  Google Scholar 

  5. Agnew SR, Duygulu Ö (2005) Int J Plast 21:1161

    Article  CAS  Google Scholar 

  6. McQueen HJ, Ryan ND (2002) Mater Sci Eng A 322:43

    Article  Google Scholar 

  7. Slooff FA, Zhou J, Duszczyk J, Katgerman L (2008) J Mater Sci 43:7165. doi:10.1007/s10853-008-3014-2

    Article  CAS  Google Scholar 

  8. Slooff FA, Dzwonczyk JS, Zhou J, Duszczyk J, Katgerman L (2010) Mater Sci Eng A 527:735

    Article  Google Scholar 

  9. Al-Samman T, Gottstein G (2008) Mater Sci Eng A 490:411

    Article  Google Scholar 

  10. Poliak WI, Jonas JJ (1996) Acta Mater 44:127

    Article  CAS  Google Scholar 

  11. Yin DL, Zhang KF, Wang GF, Han WB (2005) Mater Sci Eng A 392:320

    Article  Google Scholar 

  12. Galiyev A, Kaibyshev R, Gottstein G (2001) Acta Mater 49:1199

    Article  CAS  Google Scholar 

  13. Galiyev A, Kaibyshev R, Sakai T (2003) Mater Sci Forum 419–422:509

    Article  Google Scholar 

  14. Frost HJ, Ashby MF (2012) The plasticity and creep of metals and ceramics version of deformation-mechanism maps. Cambridge University, Cambridge. http://engineering.dartmouth.edu/defmech/). Accessed 20 March 2012

  15. Goetz RL, Semiatin SL (2001) J Mater Eng Perform 10:710

    Article  CAS  Google Scholar 

  16. Huppmann M, Gall S, Müller S, Reimers W (2010) Mater Sci Eng A 528:342

    Article  Google Scholar 

  17. Watanabe H, Tsutsui H, Mukai T, Kohzu M, Tanabe S, Higashi K (2001) Int J Plast 17:387

    Article  CAS  Google Scholar 

  18. Bruni C, Donati L, El Mehtedi M, Simoncini M (2008) Key Eng Mater 367:87

    Article  CAS  Google Scholar 

  19. Barnett MR (2001) J Light Met 1:167

    Article  Google Scholar 

  20. Wu X, Liu Y (2002) Scripta Mater 46:269

    Article  CAS  Google Scholar 

  21. Spigarelli S, El Mehtedi M, Cabibbo M, Evangelista E, Kaneko J, Jäger A, Gartnerova V (2007) Mater Sci Eng A 462:197

    Article  Google Scholar 

  22. Hakamada M, Shimizu K, Yamashita T, Watazu A, Saito N, Iwasaki H (2010) J Mater Sci 45:719. doi:10.1007/s10853-009-3990-x

    Article  CAS  Google Scholar 

  23. Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4827. doi:10.1007/s10853-010-4589-y

    Article  CAS  Google Scholar 

  24. Jain A, Duygulu O, Brown DW, Tomé CN, Agnew SR (2008) Mater Sci Eng A 486:545

    Article  Google Scholar 

  25. Yu Z, Choo H (2011) Scripta Mater 64:434

    Article  CAS  Google Scholar 

  26. Chino Y, Kado M, Mabuchi M (2008) Acta Mater 56:387

    Article  CAS  Google Scholar 

  27. Robson JD, Henry DT, Davis B (2009) Acta Mater 57:2739

    Article  CAS  Google Scholar 

  28. Shouren W, Ru M, Liying Y, Yong W, Yanjun W (2011) J Mater Sci 46:3060. doi:10.1007/s10853-010-5184-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Deutsche Forschungsgemeinschaft (DFG) under the contract number MU 2963/6-1. The assistance of Dirk Gräning (Metallic Materials, TU Berlin) during the compression tests and metallographic preparations is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gall, S., Huppmann, M., Mayer, H.M. et al. Hot working behavior of AZ31 and ME21 magnesium alloys. J Mater Sci 48, 473–480 (2013). https://doi.org/10.1007/s10853-012-6761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6761-z

Keywords

Navigation