Skip to main content
Log in

Chemical and thermomechanical tailoring of the shape memory effect in poly(ε-caprolactone)-based systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermally activated shape memory response of polymeric materials results from a combination of the material molecular architecture with the thermal/deformational history, or ‘programming’. In this work, we investigate the shape memory response of systems based on poly(ε-caprolactone) (PCL) so as to explore the adoption of proper chemical and thermomechanical tailoring routes. Cross-linked semicrystalline PCL-based materials are prepared by different molecular architectures starting from linear, three- and four-arms star PCL functionalized with methacrylate end groups, allowing to tune the melting temperature, T m, ranging between 36 and 55 °C. The materials’ ability to display the shape memory is investigated by the application of proper thermomechanical cycles on specimens deformed at two different temperatures (23 and 65 °C, i.e. below and above the T m, respectively). The shape memory response is studied under dynamic thermal conditions in thermally activated recovery tests, to identify the typical transformation temperatures, and under isothermal conditions at given recovery temperatures, to monitor shape recovery as a function of time. All the specimens are capable of full recovery on specific thermal ranges influenced by both melting and deformation temperatures. Specimens deformed above T m are able to recover the whole deformation in a very narrow temperature region close to T m, while those deformed at room temperature display broader recovery processes, those onset at about 30 °C. Isothermal tests reveal that when the deformed material is subjected to a constant recovery temperature, the amount of recovered strain and the time required strongly depend on the particular combination of melting temperature, deformation temperature and recovery temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM (1999) Shape memory materials. University Press, Cambridge

    Google Scholar 

  2. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Mater Today 13(7–8):51

    Google Scholar 

  3. Leng JS, Lan X, Liu YJ, Du SY (2011) Prog Mater Sci 56(7):1077. doi:10.1016/J.Pmatsci.2011.03.001

    Article  CAS  Google Scholar 

  4. Lendlein A, Langer R (2002) Science 296(5573):1673. doi:10.1126/science.1066102

    Article  Google Scholar 

  5. Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K (2008) Adv Funct Mater 18(16):2428. doi:10.1002/Adfm.200701049

    Article  CAS  Google Scholar 

  6. Xie T, Rousseau IA (2009) Polymer 50(8):1852. doi:10.1016/J.Polymer.2009.02.035

    Article  CAS  Google Scholar 

  7. Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M (2000) J Intel Mater Syst Struct 11(11):877

    CAS  Google Scholar 

  8. Sokolowski WM, Tan SC (2007) J Spacecraft Rockets 44(4):750. doi:10.2514/1.22854

    Article  Google Scholar 

  9. Hu J (2007) Shape memory polymers and textiles. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  10. Browne AL, Johnson NL (2008) Hood assembly utilizing active materials based mechanisms. US Patent US2008197674

  11. Browne AL, Johnson NL (2005) Shape memory polymer seat assemblies. US Patent US2005218710

  12. Alexander PW, Browne AL, Johnson NL, Mankame N, Muhammad H, Wanke T (2007) Active material based tunable property automotive brackets. WO2007056639

  13. Lendlein A, Behl M, Hiebl B, Wischke C (2010) Expert Rev Med Devic 7(3):357. doi:10.1586/Erd.10.8

    Article  CAS  Google Scholar 

  14. Pitt CG (1990) Drugs Pharm Sci 45:71

    CAS  Google Scholar 

  15. Barot G, Rao IJ (2006) Z Angew Math Phys 57(4):652. doi:10.1007/S00033-005-0009-6

    Article  Google Scholar 

  16. Westbrook KK, Parakh V, Chung T, Mather PT, Wan LC, Dunn ML, Qi HJ (2010) J Eng Mater-T Asme 132 (4). doi:10.1115/1.4001964

  17. Xu WX, Yin RY, Lin L, Yu Y (2008) Prog Chem 20(1):140

    CAS  Google Scholar 

  18. Ren WT, Kline WM, McMullan PJ, Griffin AC (2011) Phys Status Solidi B 248(1):105. doi:10.1002/Pssb.201083972

    Article  CAS  Google Scholar 

  19. Liu YP, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Int J Plast 22(2):279. doi:10.1016/J.Ijplas.2005.03.004

    Article  CAS  Google Scholar 

  20. Wang ZD, Li ZF, Wang LY, Xiong ZY, Wang ZD, Li ZF, Wang LY, Xiong ZY (2010) J Appl Polym Sci 118(3):1406. doi:10.1002/App.32420

    CAS  Google Scholar 

  21. Chen X, Nguyen TD (2011) Mech Mater 43(3):127. doi:10.1016/J.Mechmat.2011.01.001

    Article  Google Scholar 

  22. Lendlein A, Kelch S (2002) Angewandte Chemie Int Edn 41(12):2034

    Article  CAS  Google Scholar 

  23. Liu C, Qin H, Mather PT (2007) J Mater Chem 17(16):1543. doi:10.1039/B615954k

    Article  CAS  Google Scholar 

  24. Song L, Hu W, Wang GJ, Niu GG, Zhang HB, Cao H, Wang KJ, Yang HA, Zhu SQ (2010) Macromol Biosci 10(10):1194. doi:10.1002/Mabi.201000028

    Article  CAS  Google Scholar 

  25. Liu CD, Mather PT (2002) J Appl Med Plast 6(2):47

    CAS  Google Scholar 

  26. Behl M, Lendlein A (2007) Soft Matter 3(1):58. doi:10.1039/B610611k

    Article  CAS  Google Scholar 

  27. Alteheld A, Feng YK, Kelch S, Lendlein A (2005) Angewandte Chemie-Int Edn 44(8):1188. doi:10.1002/anie.200461360

    Article  CAS  Google Scholar 

  28. Miaudet P, Derre A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P (2007) Science 318(5854):1294. doi:10.1126/Science.1145593

    Article  CAS  Google Scholar 

  29. Xie T (2010) Nature 464(7286):267. doi:10.1038/Nature08863

    Article  CAS  Google Scholar 

  30. Kratz K, Madbouly SA, Wagermaier W, Lendlein A (2011) Adv Mater 23(35):4058. doi:10.1002/Adma.201102225

    Article  CAS  Google Scholar 

  31. Chen SJ, Hu JL, Yuen CWM, Chan LK, Zhuo HT (2010) Polym Adv Technol 21(5):377. doi:10.1002/Pat.1523

    CAS  Google Scholar 

  32. Luo XF, Mather PT (2010) Adv Funct Mater 20(16):2649. doi:10.1002/Adfm.201000052

    Article  CAS  Google Scholar 

  33. Zotzmann J, Behl M, Hofmann D, Lendlein A (2010) Adv Mater 22(31):3424. doi:10.1002/Adma.200904202

    Article  CAS  Google Scholar 

  34. Behl M, Bellin I, Kelch S, Wagermaier W, Lendlein A (2009) Adv Funct Mater 19(1):102. doi:10.1002/Adfm.200800850

    Article  CAS  Google Scholar 

  35. Bellin I, Kelch S, Langer R, Lendlein A (2006) Proc Nat Acad Sci USA 103(48):18043. doi:10.1073/Pnas.0608586103

    Article  CAS  Google Scholar 

  36. Sun L, Huang WM (2010) Soft Matter 6:4403. doi:10.1039/c0sm00236d

    Article  CAS  Google Scholar 

  37. Moeller M, Hedrick JL, Degée P, Dubois P (2001) Ring Opening Polymerization. In: Buschow KHJr, Robert WC, Merton CF et al. (eds) Encyclopedia of Materials: Science and Technology. Elsevier, Oxford, pp 8202-8216. doi:10.1016/b0-08-043152-6/01470-4

  38. Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) J Polym Sci Pol Chem 43(7):1369. doi:10.1002/Pola.20598

    Article  CAS  Google Scholar 

  39. Sanda F, Sanada H, Shibasaki Y, Endo T (2002) Macromolecules 35(3):680. doi:10.1021/Ma011341f

    Article  CAS  Google Scholar 

  40. Khonakdar HA, Jafari SH, Rasouli S, Morshedian J, Abedini H (2007) Macromol Theor Simul 16(1):43. doi:10.1002/Mats.200600041

    Article  CAS  Google Scholar 

  41. Gall K, Yakacki CM, Liu YP, Shandas R, Willett N, Anseth KS (2005) J Biomed Mater Res A 73A(3):339. doi:10.1002/Jbm.A.30296

    Article  CAS  Google Scholar 

  42. Liu YP, Gall K, Dunn ML, McCluskey P (2003) Smart Mater Struct 12(6):947

    Article  CAS  Google Scholar 

  43. Hu JL, Ji FL, Wong YW (2005) Polym Int 54(3):600. doi:10.1002/Pi.1745

    Article  CAS  Google Scholar 

  44. Wong YS, Xiong Y, Venkatraman SS, Boey FYC (2008) J Biomater Sci Polym Edn 19(2):175

    Article  CAS  Google Scholar 

  45. Xie T, Page KA, Eastman SA (2011) Adv Funct Mater 21(11):2057. doi:10.1002/Adfm.201002579

    Article  Google Scholar 

  46. Yakacki CM, Nguyen TD, Likos R, Lamell R, Guigou D, Gall K (2011) Polymer 52(21):4947. doi:10.1016/J.Polymer.2011.08.027

    Article  CAS  Google Scholar 

  47. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Biomaterials 28(14):2255. doi:10.1016/J.Biomaterials.2007.01.030

    Article  CAS  Google Scholar 

  48. Azra C, Plummer CJG, Manson JAE (2011) Smart Materials & Structures 20 (8). doi:10.1088/0964-1726/20/8/082002

  49. Meyerhoff G, Appelt B (1979) Macromolecules 12(5):968

    Article  CAS  Google Scholar 

  50. Miller RL (1992) Crystallographic data for various polymers. In: E.H. BJaI (ed) Polymer Handbook, 3rd Ed. John Wiley and Sons, New York, p VI/62

  51. Jain SR, Sekkar V, Krishnamurthy VN (1993) J Appl Polym Sci 48(9):1515

    Article  CAS  Google Scholar 

  52. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  53. Wang SF, Yaszemski MJ, Knight AM, Gruetzmacher JA, Windebank AJ, Lu LC (2009) Acta Biomater 5(5):1531. doi:10.1016/J.Actbio.2008.12.015

    Article  CAS  Google Scholar 

  54. Nojima S, Hashizume K, Rohadi A, Sasaki S (1997) Polymer 38(11):2711

    Article  CAS  Google Scholar 

  55. Wang SF, Yaszemski MJ, Gruetzmacher JA, Lu LC (2008) Polymer 49(26):5692. doi:10.1016/J.Polymer.2008.10.021

    Article  CAS  Google Scholar 

  56. Fu Q, Men Y, Strobl G (2003) Polymer 44(6):1927

    Article  CAS  Google Scholar 

  57. Men YF, Rieger J, Strobl G (2003) Phys Rev Lett 91 (9). doi: 10.1103/Physrevlett.91.095502

Download references

Acknowledgements

The authors thank Prof. Francesco Pilati of the University of Modena and Reggio Emilia (Italy) for the fruitful scientific discussion and his fundamental support. The authors would like to acknowledge Regione Lombardia and INSTM Consortium (Firenze, Italy) for providing financial support to the present research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massimo Messori or Maurizio Toselli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messori, M., Degli Esposti, M., Paderni, K. et al. Chemical and thermomechanical tailoring of the shape memory effect in poly(ε-caprolactone)-based systems. J Mater Sci 48, 424–440 (2013). https://doi.org/10.1007/s10853-012-6757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6757-8

Keywords

Navigation