Skip to main content
Log in

Optical transmittance enhancement and bandgap widening of ZnO:Al powders by W codoping

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(Al, W)-codoped ZnO powders with a constant molar ratio of Zn:Al (99:1) and various molar ratios of W:Al (0–0.02) were synthesized by a sol–gel process and characterized by X-ray diffraction, field emission scanning electron microscopy, and UV–vis and luminescent spectrophotometry. The experiments indicated that the powders illustrated increased c-orientation and a decreased average particle size with increasing W content. The W doping also resulted in the enhancement of transmittance in the UV–vis light range and the widening of the bandgap. Optimal efficiency appeared at molar ratio of W:Al = 0.01. Moreover, the W doping led to the formation of a new emission center and the enhancement of the emissions in range of visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Polla DL, Muller RS, White RM (1996) IEEE Electron Device Lett 7:254

    Article  Google Scholar 

  2. Beek WJE, Wienk MM, Janssen RAJ (2006) Adv Funct Mater 16:1112

    Article  CAS  Google Scholar 

  3. Wang ZL, Song JH (2006) Science 312:242

    Article  CAS  Google Scholar 

  4. Wang JX, Sun XW, Yang Y, Huang H, Lee YC, Tan OK, Vayssieres L (2006) Nanotechnology 17:4995

    Article  CAS  Google Scholar 

  5. Liu HY, Kong H, Ma XM, Shi WZ (2007) J Mater Sci 42:2637. doi:10.1007/s10853-006-1350-7

    Article  CAS  Google Scholar 

  6. Gupta V, Mansingh A (1996) J Appl Phys 80:1063

    Article  CAS  Google Scholar 

  7. Bertolotti M, Laschena MV, Rossi M, Ferrari A, Qian LS, Quaranta F, Valentini A (1990) J Mater Res 5:1929

    Article  CAS  Google Scholar 

  8. Hirata GA, Mekittrik J, Cheek T, Siqueiros JM, Diaz JA, Contreras O, Lopex OA (1996) Thin Solid Films 228:29

    Article  Google Scholar 

  9. Nunes P, Fernandes B, Fortunan E, Vilarinlo P, Martins R (1999) Thin Solid Films 337:176

    Article  CAS  Google Scholar 

  10. Reddy KTR, Miles RW (1998) J Mater Sci Lett 17:279

    Article  CAS  Google Scholar 

  11. Lin S-S, Huanga J-L, Sajgalik P (2005) Surf Coat Technol 191:286

    Article  CAS  Google Scholar 

  12. Misra KP, Shukla RK, Srivastava A, Srivastava A (2009) Appl Phys Lett 95:031901

    Article  Google Scholar 

  13. Das AK, Misra P, Kukreja LM (2009) Phys D Appl Phys 42:165405

    Article  Google Scholar 

  14. Minami T, Yamamoto T, Miyata T (2000) Thin Solid Films 366:63

    Article  CAS  Google Scholar 

  15. Wu C, Shen J, Ma Jin, Wang S, Zhang Z, Yang X (2009) Semicond Sci Technol 24:125012

    Article  Google Scholar 

  16. Lin YC, Wang BL, Yen WT, Ha CT, Peng Chris (2010) Thin Solid Films 518:4928

    Article  CAS  Google Scholar 

  17. Lin J-C, Peng K-C, Liao H-L, Lee S-L (2008) Thin Solid Films 516:5349

    Article  CAS  Google Scholar 

  18. Lin J-C, Peng K-C, Tseng CA, Lee S-L (2008) Surf Coat Technol 202:5480

    Article  CAS  Google Scholar 

  19. Chen J, Chen D, He J, Zhang S, Chen Z (2009) Appl Surf Sci 255:9413

    Article  CAS  Google Scholar 

  20. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Phys Rev B 37:10244

    Article  CAS  Google Scholar 

  21. Lin JC, Peng KC, Liao HL, Lee SL (2008) Thin Solid Films 516:5349

    Article  CAS  Google Scholar 

  22. Dakhel AA (2009) J Alloys Compd 475:51

    Article  CAS  Google Scholar 

  23. Dakhel AA (2011) Mater Chem Phys 130:398

    Article  CAS  Google Scholar 

  24. Camassel J, Auvergne D, Mathieu H (1975) J Appl Phys 46:2683

    Article  CAS  Google Scholar 

  25. Ma Xiying, Wang Zui (2012) Mater Sci Semicond Process 14:1

    Google Scholar 

  26. Chattopadhyay S, Neogi SK, Pandit P, Dutta S, Rakshit T, Jana D, Chattopadhyay S, Sarkar A, Ray SK (2012) J Lumin 132:6

    Article  CAS  Google Scholar 

  27. Rakhesh V, Junaid Bushiri M, Vaidyan VK (2007) J Optoelectron Adv Mater 9:3740

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. F. Tian of the Northwest Institute for Non-Ferrous Metal Research for her kind assistance in SEM measurement. The authors also thank associate Prof. J.-P. Wu, Dr. H. Liu, and Dr. Y.-P. Qiao of the Shaanxi University of Science and Technology for their kind assistances in XRD, UV–vis spectra and photoluminescence measurements, and the financial assistance of the Natural Scientific Fund Project of Shaanxi Province (2012JM6008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-Y. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, HY., He, Z., Shen, Q. et al. Optical transmittance enhancement and bandgap widening of ZnO:Al powders by W codoping. J Mater Sci 48, 316–321 (2013). https://doi.org/10.1007/s10853-012-6748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6748-9

Keywords

Navigation