Skip to main content
Log in

Nontoxic poly(ethylene oxide phosphonamidate) hydrogels as templates for biomimetic mineralization of calcium carbonate and hydroxyapatite architectures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple protocol has been developed for the creation of the biomimetic hybrid materials, calcium carbonate, and hydroxyapatite, by in situ growth and mineralization in newly developed nontoxic hydrogel templates. A series of poly(ethylene oxide phosphonamidate) hydrogels with different network structures were synthesized by reacting various poly(ethylene glycol)s with phosphorous oxychloride and diamines in a one-pot protocol, which exhibits promising advantages including a short reaction time, an easy separation, and a high yield with a mass producible feasibility. The hydrogels were proven to be nontoxic according to an in vitro viability assay using human embryonic kidney 293T cells. Careful control of growth and mineralization conditions such as ions transport rate, pH, type of hydrogel, and mineralization temperature resulted in a variety of calcium carbonate and hydroxylapatite architectures including nanorods, nanowires, and well-defined hybrid structures. The resulting materials were analyzed by infrared spectroscopy, electron microscopes, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mayer G (2005) Science 310:1144

    Article  CAS  Google Scholar 

  2. Liu G, Zhao DC, Tomsia AP, Minor AM, Song XY, Saiz E (2009) J Am Chem Soc 131:9937

    Article  CAS  Google Scholar 

  3. Xu AW, Ma YR, Colfen H (2007) J Mater Chem 17:415

    Article  CAS  Google Scholar 

  4. Pouget E, Dujardin E, Cavalier A, Moreac A, Valery C, Marchi-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F (2007) Nat Mater 6:434

    Article  CAS  Google Scholar 

  5. Hartgerink JD, Beniash E, Stupp SI (2001) Science 294:1684

    Article  CAS  Google Scholar 

  6. Kokubo T, Kim HM, Kawashita M (2003) Biomaterials 24:2161

    Article  CAS  Google Scholar 

  7. Granja PL, Barbosa MA, Pouységu L, De Jéso B, Rouais F, Baquey C (2001) J Mater Sci 36:2163. doi:10.1023/A:1017587815583

    Article  CAS  Google Scholar 

  8. Robinson C, Connell S, Kirkham J, Shore R, Smith A (2004) J Mater Chem 14:2242

    Article  CAS  Google Scholar 

  9. Yannis IV (1996) In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science. Academic Press, San Diego, pp 84–94

    Google Scholar 

  10. Dumitru S, Vidal PF, Chronet E (1996) In: Dumitru S (ed) Polysaccharides in medicinal applications. Marcel Dekker, New York, pp 87–105

    Google Scholar 

  11. Silva CC, Pinheiro AG, Figueiró SD, Góes JC, Sasaki JM, Miranda MAR, Sombra ASB (2002) J Mater Sci 37:2061. doi:10.1023/A:1015219800490

    Article  CAS  Google Scholar 

  12. Won CY, Chu CC (2000) In: Wise DL (ed) Biomaterials bioengineering hbook. Marcel Dekker, New York, pp 355–371

    Google Scholar 

  13. Schnepp ZAC, Gonzalez-McQuire R, Mann S (2006) Adv Mater 18:1869

    Article  CAS  Google Scholar 

  14. Furuichi K, Oaki Y, Imai H (2006) Chem Mater 18:229

    Article  CAS  Google Scholar 

  15. Li QZ, Yang DZ, Ma GP, Xu Q, Chen XM, Lu FM, Nie J (2009) Int J Biol Macromol 44:121

    Article  CAS  Google Scholar 

  16. Murphy WL, Mooney DJ (2002) J Am Chem Soc 124:1910

    Article  CAS  Google Scholar 

  17. Grassmann O, Lobmann P (2004) Biomaterials 25:277

    Article  CAS  Google Scholar 

  18. Taguchi T, Kishida A, Akashi M (1998) Chem Lett 27:711

    Article  Google Scholar 

  19. Hutchens SA, Benson RS, Evans BR, ÓNeill HM, Rawn CJ (2006) Biomaterials 27:4661

    Article  CAS  Google Scholar 

  20. Qu HB, Xia ZM, Knecht DA, Wei M (2008) J Am Ceram Soc 91:3211

    Article  CAS  Google Scholar 

  21. Hong JL, Hyung WC, Kyung JK, Sang CL (2006) Chem Mater 18:5111

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Song, S.I., Zheng, S. et al. Nontoxic poly(ethylene oxide phosphonamidate) hydrogels as templates for biomimetic mineralization of calcium carbonate and hydroxyapatite architectures. J Mater Sci 48, 288–298 (2013). https://doi.org/10.1007/s10853-012-6744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6744-0

Keywords

Navigation