Skip to main content
Log in

Contact morphology and constitutive equation in evaluating tensile properties of austenitic stainless steels through instrumented spherical indentation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We evaluate representative stress and strain of austenitic stainless steels using instrumented indentation tests with a spherical indenter by taking into account the real contact depth and effective radius. We investigate the relation between material pileup underneath the spherical indenter and the strain-hardening exponent in uniaxial tensile tests for these steels. We evaluate the suitability of three constitutive equations, the Hollomon, Ludwigson, and Swift equations, for describing linear-type strain-hardening of austenitic stainless steels. Using the real contact depth and effective radii developed for the austenitic stainless steels, we find good agreement between representative stress and strain in instrumented indentation and uniaxial tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  2. Kim JY, Lee KW, Lee JS, Kwon D (2006) Surf Coat Technol 201:4278

    Article  CAS  Google Scholar 

  3. Bouzakis KD, Michailidis N (2004) Thin Solid Films 469:227

    Article  Google Scholar 

  4. Tyulyukovskiy E, Huber N (2006) J Mater Res 21:664

    Article  CAS  Google Scholar 

  5. Klötzer D, Ullner C, Tyulyukovskiy E, Huber N (2006) J Mater Res 21:677

    Article  Google Scholar 

  6. Lee YH, Kim Y, Park JS, Lee HM (2010) Nanosci Nanotechno Lett 2:337

    Article  Google Scholar 

  7. Choi IC, Yoo BG, Kim YJ, Seok MY, Wang YM, Jang JI (2011) Scripta Mater 65:300

    Article  CAS  Google Scholar 

  8. Lee YH, Park JS, Lee HM, Nahm SH (2010) Int J Mod Phys B 24:2453

    Article  CAS  Google Scholar 

  9. Lee KW, Kim KH, Kim JY, Kwon D (2008) J Phys D Appl Phys 41:074014

    Article  Google Scholar 

  10. Jang JI (2009) J Ceram Process Res 10:391

    Google Scholar 

  11. Tabor D (1951) Hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  12. Ahn JH, Kwon D (2001) J Mater Res 16:3170

    Article  CAS  Google Scholar 

  13. Kim SH, Lee BW, Choi Y, Kwon D (2006) Mater Sci Eng A Struct 415:59

    Article  Google Scholar 

  14. Kang SK, Kim JY, Park CP, Kim HU, Kwon D (2010) J Mater Res 25:337

    Article  CAS  Google Scholar 

  15. Malzbender J, de With G (2002) J Mater Res 17:502

    Article  CAS  Google Scholar 

  16. Cheng YT, Cheng CM (1999) Int J Solids Struct 36:1231

    Article  Google Scholar 

  17. Choi Y, Lee HS, Kwon D (2004) J Mater Res 19:3307

    Article  CAS  Google Scholar 

  18. Alcalà J, Barone AC, Anglada M (2000) Acta Mater 48:3451

    Article  Google Scholar 

  19. Bartier O, Hernot X, Mauvoisin G (2010) Mech Mater 42:640

    Article  Google Scholar 

  20. Kang SK, Kim JY, Kang I, Kwon D (2009) J Mater Res 24:2965

    Article  CAS  Google Scholar 

  21. ASTM E8-04 (2004) Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken

  22. Hollomon JH (1945) Trans Metall Soc AIME 162:268

    Google Scholar 

  23. Kleemola HJ, Nieminen MA (1974) Metall Mater Trans 5:1863

    Article  CAS  Google Scholar 

  24. Ludwigson DC (1971) Metall Mater Trans 2:2825

    Article  CAS  Google Scholar 

  25. Swift HW (1952) J Mech Phys Solids 1:1

    Article  Google Scholar 

  26. Samuel KG, Rodriguez P (2005) J Mater Sci 40:5727. doi:10.1007/s10853-005-1078-9

    Article  CAS  Google Scholar 

  27. Yoo JD, Park KT (2008) Mater Sci Eng A 496:417

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (0417-20110083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Young Kim.

Additional information

Young-Cheon Kim and Seung-Kyun Kang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YC., Kang, SK., Kim, JY. et al. Contact morphology and constitutive equation in evaluating tensile properties of austenitic stainless steels through instrumented spherical indentation. J Mater Sci 48, 232–239 (2013). https://doi.org/10.1007/s10853-012-6733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6733-3

Keywords

Navigation