Journal of Materials Science

, Volume 48, Issue 1, pp 220–226 | Cite as

The thermal stability of nanocrystalline cartridge brass and the effect of zirconium additions

  • Mark A. Atwater
  • Hamed Bahmanpour
  • Ronald O. Scattergood
  • Carl C. Koch


The thermal stability of nanocrystalline cartridge brass (Cu–30 at.% Zn) and brass–Zr alloys were investigated. The alloys were produced by cryogenic ball milling and subsequently heat treated to a maximum temperature of 800 °C. The grain size of pure brass was found to be relatively stable in comparison to pure copper, and a high hardness was retained up to 600 °C. When 1 at.% zirconium was alloyed with the brass, the grain size was stabilized near 100 nm even at 800 °C. At the highest temperature, hardness was retained above 2.5 GPa for 1 and 5 at.% zirconium alloys, but the pure brass softened significantly. The stabilization is believed to be dominated by Zn–Zr interactions as a second phase of these two was observed in X-ray diffraction and transmission electron microscopy. Thermodynamic modeling indicates a zero grain boundary energy may be achieved depending on the mixing enthalpy value used (i.e., calculated vs. experimental) under ideal conditions, but microstructural features such as twinning and second phase particles are thought to be the dominant stabilization mechanism. Zr worked well in stabilizing the brass in the nanocrystalline state to nearly 90 % of its melting temperature.


Stack Fault Energy Equal Channel Angular Pressing Select Area Diffraction Pattern Zirconium Alloy Faint Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the support of this research by the Office of Naval Research under grant number N00014-10-1-0168.


  1. 1.
    Kowalski M, Spencer PJ (1993) J Phase Equilib 14:432CrossRefGoogle Scholar
  2. 2.
    Oberg E, Jones FD, Horton HL, Ryffel HH (2000) Machinery’s handbook, 26th edn. Industrial Press Inc., New YorkGoogle Scholar
  3. 3.
    Ames M, Markmann J, Karos R, Michels A, Tschope A, Birringer R (2008) Acta Mater 56:4255CrossRefGoogle Scholar
  4. 4.
    Atwater MA, Scattergood RO, Koch CC (2012) Mater Sci Eng A (under review)Google Scholar
  5. 5.
    Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskesa LJ, Mathaudhua SN (2011) Mater Sci Eng A 528:4365CrossRefGoogle Scholar
  6. 6.
    Koch CC, Scattergood RO, Darling KA, Semones JE (2008) J Mater Sci 43:7264. doi: 10.1007/s10853-008-2870-0 CrossRefGoogle Scholar
  7. 7.
    Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Scripta Mater 59:530CrossRefGoogle Scholar
  8. 8.
    Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Mater Sci Eng A 527:3572CrossRefGoogle Scholar
  9. 9.
    Dake JM, Krill CE (2012) Scripta Mater 66:390CrossRefGoogle Scholar
  10. 10.
    Rachinger WA (1948) J Sci Instrum 25:254CrossRefGoogle Scholar
  11. 11.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, Upper Saddle River, p 170Google Scholar
  12. 12.
    VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO (2011) Mater Sci Eng A 528:2192CrossRefGoogle Scholar
  13. 13.
    Shen TD, Schwarz RB, Feng S, Swadener JG, Huang JY, Tang M, Zhang J, Vogel SC, Zhao Y (2007) Acta Mater 55:5007CrossRefGoogle Scholar
  14. 14.
    Meyers M, Chawla K (2009) Mechanical behavior of materials. Cambridge University Press, New York, p 346Google Scholar
  15. 15.
    Bahmanpour H, Youssef KM, Horky J, Setman D, Atwater MA, Zehetbauer MJ, Scattergood RO, Koch CC (2012) Acta Mater 60:3340CrossRefGoogle Scholar
  16. 16.
    Feltham P, Copely CJ (1960) Acta Metall 8:542CrossRefGoogle Scholar
  17. 17.
    Gallagher PCJ (1970) Metall Trans 1:2429Google Scholar
  18. 18.
    Dalton WK (1994) The technology of metallurgy. Merrill, New YorkGoogle Scholar
  19. 19.
    Fisher JC (1954) Acta Metall 2:9CrossRefGoogle Scholar
  20. 20.
    Butt MZ, Ghaur IM (1988) Phys Status Solidi A 107:187CrossRefGoogle Scholar
  21. 21.
    Reinhardt L, Schonfeld B, Kostorz G (1990) Phys Rev B 41:1727CrossRefGoogle Scholar
  22. 22.
    Zhu YT, Liao XZ, Wu XL (2012) Prog Mater Sci 57:1CrossRefGoogle Scholar
  23. 23.
    Neishi K, Horita Z, Langdon TG (2003) Mater Sci Eng A 352:129CrossRefGoogle Scholar
  24. 24.
    Mughrabi H, Hoppel HW, Kautz M, Valiev RZ (2003) Z Metallkd 94:1079Google Scholar
  25. 25.
    Saldana C, Murthy TG, Shankar MR, Stach EA, Chandrasekar S (2009) Appl Phys Lett 94:021910CrossRefGoogle Scholar
  26. 26.
    Koch CC (2007) J Mater Sci 42:1403. doi: 10.1007/s10853-006-0609-3 CrossRefGoogle Scholar
  27. 27.
    Krill CE, Ehrhardt H, Birringer R (2005) Z Metallkd 96:1134Google Scholar
  28. 28.
    VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO, Butler BG (2010) Acta Mater 58:4292CrossRefGoogle Scholar
  29. 29.
    Arnberg L, Backmark U, Backstrom N, Lange J (1986) Mater Sci Eng 83:115CrossRefGoogle Scholar
  30. 30.
    Arias D, Abrlata JP (1990) Bull Alloy Phase Diagr 11:452CrossRefGoogle Scholar
  31. 31.
    Dutkiewicz J (1992) J Phase Equilib 13:430CrossRefGoogle Scholar
  32. 32.
    Okamoto H (2007) J Phase Equilib Diffus 28:236CrossRefGoogle Scholar
  33. 33.
    Okamoto H (2008) J Phase Equilib 29:204CrossRefGoogle Scholar
  34. 34.
    Williams ME, Boettinger WJ, Kattner UR (2004) J Phase Equilib Diffus 25:355Google Scholar
  35. 35.
    Rieger W, Nowotny H, Benesovsky F (1965) Monatsh Chem 96:232CrossRefGoogle Scholar
  36. 36.
    Hofer G, Stadelmaier HH (1967) Monatsh Chem 98:408CrossRefGoogle Scholar
  37. 37.
    Ganglberger E, Nowotny H, Benesovsky F (1966) Monatsh Chem 97:829CrossRefGoogle Scholar
  38. 38.
    Suryanarayana C, Ivanob E, Boldyrev VV (2001) Mater Sci Eng A 304–306:151Google Scholar
  39. 39.
    Wynblatt P, Ku RC (1977) Surf Sci 65:511CrossRefGoogle Scholar
  40. 40.
    Wynblatt PW, Chatain D (2006) Metall Mater Trans A 37:2595CrossRefGoogle Scholar
  41. 41.
    VanLeeuwen BK, Darling KA, Atwater MA, Liu Z-K, Koch CC, Scattergood RO (2012) J Mater Sci (under review)Google Scholar
  42. 42.
    Atwater MA, Darling KA (2012) Technical Report ARL-TR-6007. U.S. Army Research Laboratory, Aberdeen Proving Ground, p 1Google Scholar
  43. 43.
    Friedel J (1954) Adv Phys 3:446CrossRefGoogle Scholar
  44. 44.
    de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals: transition metal alloys. Elsevier Scientific, AmsterdamGoogle Scholar
  45. 45.
    Vitos L, Ruban AV, Skriver HL, Kollar J (1998) Surf Sci 411:186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mark A. Atwater
    • 1
  • Hamed Bahmanpour
    • 1
  • Ronald O. Scattergood
    • 1
  • Carl C. Koch
    • 1
  1. 1.Department of Materials Science and EngineeringNC State UniversityRaleighUSA

Personalised recommendations