Skip to main content

Advertisement

Log in

The thermal stability of nanocrystalline cartridge brass and the effect of zirconium additions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal stability of nanocrystalline cartridge brass (Cu–30 at.% Zn) and brass–Zr alloys were investigated. The alloys were produced by cryogenic ball milling and subsequently heat treated to a maximum temperature of 800 °C. The grain size of pure brass was found to be relatively stable in comparison to pure copper, and a high hardness was retained up to 600 °C. When 1 at.% zirconium was alloyed with the brass, the grain size was stabilized near 100 nm even at 800 °C. At the highest temperature, hardness was retained above 2.5 GPa for 1 and 5 at.% zirconium alloys, but the pure brass softened significantly. The stabilization is believed to be dominated by Zn–Zr interactions as a second phase of these two was observed in X-ray diffraction and transmission electron microscopy. Thermodynamic modeling indicates a zero grain boundary energy may be achieved depending on the mixing enthalpy value used (i.e., calculated vs. experimental) under ideal conditions, but microstructural features such as twinning and second phase particles are thought to be the dominant stabilization mechanism. Zr worked well in stabilizing the brass in the nanocrystalline state to nearly 90 % of its melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kowalski M, Spencer PJ (1993) J Phase Equilib 14:432

    Article  CAS  Google Scholar 

  2. Oberg E, Jones FD, Horton HL, Ryffel HH (2000) Machinery’s handbook, 26th edn. Industrial Press Inc., New York

    Google Scholar 

  3. Ames M, Markmann J, Karos R, Michels A, Tschope A, Birringer R (2008) Acta Mater 56:4255

    Article  CAS  Google Scholar 

  4. Atwater MA, Scattergood RO, Koch CC (2012) Mater Sci Eng A (under review)

  5. Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskesa LJ, Mathaudhua SN (2011) Mater Sci Eng A 528:4365

    Article  Google Scholar 

  6. Koch CC, Scattergood RO, Darling KA, Semones JE (2008) J Mater Sci 43:7264. doi:10.1007/s10853-008-2870-0

    Article  CAS  Google Scholar 

  7. Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Scripta Mater 59:530

    Article  CAS  Google Scholar 

  8. Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Mater Sci Eng A 527:3572

    Article  Google Scholar 

  9. Dake JM, Krill CE (2012) Scripta Mater 66:390

    Article  CAS  Google Scholar 

  10. Rachinger WA (1948) J Sci Instrum 25:254

    Article  Google Scholar 

  11. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, Upper Saddle River, p 170

    Google Scholar 

  12. VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO (2011) Mater Sci Eng A 528:2192

    Article  Google Scholar 

  13. Shen TD, Schwarz RB, Feng S, Swadener JG, Huang JY, Tang M, Zhang J, Vogel SC, Zhao Y (2007) Acta Mater 55:5007

    Article  CAS  Google Scholar 

  14. Meyers M, Chawla K (2009) Mechanical behavior of materials. Cambridge University Press, New York, p 346

    Google Scholar 

  15. Bahmanpour H, Youssef KM, Horky J, Setman D, Atwater MA, Zehetbauer MJ, Scattergood RO, Koch CC (2012) Acta Mater 60:3340

    Article  CAS  Google Scholar 

  16. Feltham P, Copely CJ (1960) Acta Metall 8:542

    Article  CAS  Google Scholar 

  17. Gallagher PCJ (1970) Metall Trans 1:2429

    CAS  Google Scholar 

  18. Dalton WK (1994) The technology of metallurgy. Merrill, New York

    Google Scholar 

  19. Fisher JC (1954) Acta Metall 2:9

    Article  Google Scholar 

  20. Butt MZ, Ghaur IM (1988) Phys Status Solidi A 107:187

    Article  CAS  Google Scholar 

  21. Reinhardt L, Schonfeld B, Kostorz G (1990) Phys Rev B 41:1727

    Article  Google Scholar 

  22. Zhu YT, Liao XZ, Wu XL (2012) Prog Mater Sci 57:1

    Article  CAS  Google Scholar 

  23. Neishi K, Horita Z, Langdon TG (2003) Mater Sci Eng A 352:129

    Article  Google Scholar 

  24. Mughrabi H, Hoppel HW, Kautz M, Valiev RZ (2003) Z Metallkd 94:1079

    CAS  Google Scholar 

  25. Saldana C, Murthy TG, Shankar MR, Stach EA, Chandrasekar S (2009) Appl Phys Lett 94:021910

    Article  Google Scholar 

  26. Koch CC (2007) J Mater Sci 42:1403. doi:10.1007/s10853-006-0609-3

    Article  CAS  Google Scholar 

  27. Krill CE, Ehrhardt H, Birringer R (2005) Z Metallkd 96:1134

    CAS  Google Scholar 

  28. VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO, Butler BG (2010) Acta Mater 58:4292

    Article  CAS  Google Scholar 

  29. Arnberg L, Backmark U, Backstrom N, Lange J (1986) Mater Sci Eng 83:115

    Article  CAS  Google Scholar 

  30. Arias D, Abrlata JP (1990) Bull Alloy Phase Diagr 11:452

    Article  CAS  Google Scholar 

  31. Dutkiewicz J (1992) J Phase Equilib 13:430

    Article  CAS  Google Scholar 

  32. Okamoto H (2007) J Phase Equilib Diffus 28:236

    Article  CAS  Google Scholar 

  33. Okamoto H (2008) J Phase Equilib 29:204

    Article  CAS  Google Scholar 

  34. Williams ME, Boettinger WJ, Kattner UR (2004) J Phase Equilib Diffus 25:355

    CAS  Google Scholar 

  35. Rieger W, Nowotny H, Benesovsky F (1965) Monatsh Chem 96:232

    Article  CAS  Google Scholar 

  36. Hofer G, Stadelmaier HH (1967) Monatsh Chem 98:408

    Article  CAS  Google Scholar 

  37. Ganglberger E, Nowotny H, Benesovsky F (1966) Monatsh Chem 97:829

    Article  CAS  Google Scholar 

  38. Suryanarayana C, Ivanob E, Boldyrev VV (2001) Mater Sci Eng A 304–306:151

    Google Scholar 

  39. Wynblatt P, Ku RC (1977) Surf Sci 65:511

    Article  CAS  Google Scholar 

  40. Wynblatt PW, Chatain D (2006) Metall Mater Trans A 37:2595

    Article  Google Scholar 

  41. VanLeeuwen BK, Darling KA, Atwater MA, Liu Z-K, Koch CC, Scattergood RO (2012) J Mater Sci (under review)

  42. Atwater MA, Darling KA (2012) Technical Report ARL-TR-6007. U.S. Army Research Laboratory, Aberdeen Proving Ground, p 1

    Google Scholar 

  43. Friedel J (1954) Adv Phys 3:446

    Article  Google Scholar 

  44. de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals: transition metal alloys. Elsevier Scientific, Amsterdam

    Google Scholar 

  45. Vitos L, Ruban AV, Skriver HL, Kollar J (1998) Surf Sci 411:186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of this research by the Office of Naval Research under grant number N00014-10-1-0168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Atwater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atwater, M.A., Bahmanpour, H., Scattergood, R.O. et al. The thermal stability of nanocrystalline cartridge brass and the effect of zirconium additions. J Mater Sci 48, 220–226 (2013). https://doi.org/10.1007/s10853-012-6731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6731-5

Keywords

Navigation