Skip to main content
Log in

Modification of liquid/solid interface shape in directionally solidifying Al–Cu alloys by a transverse magnetic field

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al-0.85wt%Cu and Al-2.5wt%Cu alloys were directionally solidified under different transverse magnetic field (TMF) intensities to investigate the influence of TMF on the liquid/solid interface shape with respect to the various length scales appearing (planar, cellular, and dendritic interfaces). Results show that planar and cellular interfaces tilt to one side and then level off with increasing TMF although the dendritic interface appears not to behave in this manner. In situ synchrotron X-ray imaging was applied during directional solidification of the Al-4wt%Cu alloy under a 0.08T TMF, revealing leveling of the initially sloped interface. Solute redistribution, caused by thermoelectric magnetic convection (TEMC), responds to the changes in the interface shape. Because different typical length scales should be used in estimating the velocity of TEMC for planar, cellular, and dendritic interfaces, the maximum velocity of the convection ahead of the interface is obtained under different TMF intensities; correspondingly, leveling of the interface’s degree of slop varies with TMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trivedi R, Miyahara H, Mazumder P, Simsek E, Tewari SN (2001) J Cryst Growth 222:365

    Article  CAS  Google Scholar 

  2. Trivedi R, Liu S, Mazumder P, Simsek E (2001) Sci Tech Adv Mater 2:309

    Article  CAS  Google Scholar 

  3. Rutter JE, Chalmers B (1953) Can J Phys 31:15

    Article  CAS  Google Scholar 

  4. Mullins WW, Sekerka RF (1964) J Appl Phys 35:444

    Article  Google Scholar 

  5. Szekely J, Chhebra PS (1970) Metall Mater Trans A 1:1195

    Google Scholar 

  6. Chang CE, Wilcox WR (1974) J Cryst Growth 21:135

    Article  CAS  Google Scholar 

  7. Burden MH, Hebditch DJ, Hunt JD (1973) J Cryst Growth 20:121

    Article  CAS  Google Scholar 

  8. Zawilski KT, Custodio MCC, Dematlei RC, Feigelson RS (2005) J Cryst Growth 282:236

    Article  CAS  Google Scholar 

  9. Elmahallawy NA, Farag MM (1978) J Cryst Growth 44:251

    Article  CAS  Google Scholar 

  10. Arafune K, Kodera K, Kinoshita A, Hirata A (2003) J Cryst Growth 249:429

    Article  CAS  Google Scholar 

  11. Tanasie C, Vizman D, Friedrich J (2011) J Cryst Growth 318:293

    Article  CAS  Google Scholar 

  12. Chedzey HA, Hurle DTJ (1966) Nature 210:933

    Article  CAS  Google Scholar 

  13. Bottinger WJ, Biancaniello FS, Coriell SR (1981) Metall Trans A 12:321

    Article  Google Scholar 

  14. Tewari SN, Shah R, Song H (1994) Metall Mater Trans A 25:1535

    Article  Google Scholar 

  15. Alboussiere T, Moreau R, Compte D (1991) Rendu de l’Acad Sci 313:749

    CAS  Google Scholar 

  16. Laskar O (1994) Ph.D Thesis. INPG, Grenoble

  17. Li X, Gagnoud A, Ren ZM, Fautrelle Y, Moreau R (2009) Acta Mater 57:2180

    Article  CAS  Google Scholar 

  18. Li X, Ren ZM, Gagnoud A, Budenkova O, Fautrelle Y (2011) Metall Mater Trans A 42:3459

    Article  CAS  Google Scholar 

  19. Li X, Ren ZM, Cao GH, Gagnoud A, Fautrelle Y (2011) Mater Lett 65:3340

    Article  CAS  Google Scholar 

  20. Yuan GZ, Ren WL, Ren ZM, Zhong YB, Li CJ, Fan YF et al (2011) Mater Sci Eng 27:012048

    Google Scholar 

  21. Bogno A, Reinhart G, Buffet A et al (2011) J Cryst Growth 318:1134

    Article  CAS  Google Scholar 

  22. Schaefer RJ, Coriell SR (1984) Metall Trans A 15:2109

    Article  Google Scholar 

  23. Utech HP, Flemings MC (1966) J Appl Phys 37:2021

    Article  CAS  Google Scholar 

  24. Shercliff JA (1979) J Fluid Mech 91:231

    Article  CAS  Google Scholar 

  25. Lehmann P, Moreau R, Camel D, Bolcato R (1998) Acta Metall 46:4067

    CAS  Google Scholar 

  26. Walter M, Walpwski J, Zbarsky V et al (2011) Nature Mater 10:742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the CNRS/ANR OPTIMAG project, the Natural Science Foundation of China (No. 50911130365) and the National 973 Project (No. 2011CB610404). The authors are indebted to Prof. Claude Esling at LETAM/CNRS-UMR, Metz, for helpful and fruitful discussions, Dr. Tamzin Lafford and Mr. Xavier Guichard at ESRF, Grenoble, for help with experiments, Dr. Simona Epure in our laboratory and Dr. Yangyang Fan at Worcester Polytechnic Institute, USA, their for fruitful help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongming Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Ren, Z., Fautrelle, Y. et al. Modification of liquid/solid interface shape in directionally solidifying Al–Cu alloys by a transverse magnetic field. J Mater Sci 48, 213–219 (2013). https://doi.org/10.1007/s10853-012-6730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6730-6

Keywords

Navigation