Journal of Materials Science

, Volume 47, Issue 23, pp 8134–8144 | Cite as

The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation



In this study, two groups of carbon supported PtPd samples with different percentages of metals were prepared to examine the effects of Pd and stabilizing agents on the catalytic activity towards methanol and ethanol oxidation reactions. As a stabilizing agent, 1-hexanethiol and 1,1-dimethyl hexanethiol were used for group “a” and “b” catalysts, respectively. Cyclic voltammetry, chronoamperometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to understand the nature of the prepared catalysts. TEM and XRD results indicated a similar size distribution of the metal nanoparticles with a narrow average crystallite size of 3.0–3.7 nm. XPS data revealed the presence of two different oxidation states for both platinum and palladium, being Pt(0), Pt(IV), Pd(0), and Pd(II). Electrochemical studies indicated that the group “b” type catalysts have a higher catalytic activity than group “a”. The most active catalyst was found to be a carbon supported 88 %Pt/12 %Pd prepared with 1,1-dimethyl hexanethiol, which has an activity of ~5 times (~0.450 A/mg Pt at 0.57 V for methanol) and ~14 times (~0.350 A/g Pt at 0.56 V for ethanol) greater than the commercial E-TEK catalyst.


  1. 1.
    Carrette L, Friedrich KA, Stimming U (2000) ChemPhysChem 1:162CrossRefGoogle Scholar
  2. 2.
    Wasmus S, Kuver A (1999) J Electroanal Chem 461:14CrossRefGoogle Scholar
  3. 3.
    Zhou WJ, Zhou BW, Li Z, Zhou ZH et al (2004) J Power Sources 126:16CrossRefGoogle Scholar
  4. 4.
    Singh S, Datta J (2010) J Mater Sci 45:3030. doi:10.1007/s10853-010-4307-9 CrossRefGoogle Scholar
  5. 5.
    Sen F, Sen S, Gokagac G (2011) Phys Chem Chem Phys 13:1676CrossRefGoogle Scholar
  6. 6.
    Acres GJK (2001) J Power Sources 100:60CrossRefGoogle Scholar
  7. 7.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C et al (2002) J Power Sources 105:283CrossRefGoogle Scholar
  8. 8.
    Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Electrochim Acta 52:6622CrossRefGoogle Scholar
  9. 9.
    Antolini E (2007) J Power Sources 170:1CrossRefGoogle Scholar
  10. 10.
    Switzer EE, Olsona TS, Datye AK, Atanassov P et al (2009) Electrochim Acta 54:989CrossRefGoogle Scholar
  11. 11.
    Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger JM (2004) J Electrochim Acta 49:3901CrossRefGoogle Scholar
  12. 12.
    Tong YY, Zelakiewicz BS, Dy BM, Pogozelski AR (2005) Chem Phys Lett 406:137CrossRefGoogle Scholar
  13. 13.
    Isaacs SR, Choo H, Ko WB, Shon YS (2006) Chem Mater 18:107CrossRefGoogle Scholar
  14. 14.
    Tu W, Takai K, Fukui K, Miyazaki A, Enoki T (2003) J Phys Chem B 107:10134CrossRefGoogle Scholar
  15. 15.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366CrossRefGoogle Scholar
  16. 16.
    Baglio V, Stassi A, Di Blassi A, Urso CD, Arico AS (2007) Electrochim Acta 53:1360CrossRefGoogle Scholar
  17. 17.
    Sen F, Gokagac G (2008) Energy Fuels 22:1858CrossRefGoogle Scholar
  18. 18.
    Spinace EV, Neto AO, Linardi M (2004) J Power Sources 129:121CrossRefGoogle Scholar
  19. 19.
    Lemos SG, Oliveira RTS, Santos MC, Nascente PAP, Bulhoes LOS et al (2007) J Power Sources 163:695CrossRefGoogle Scholar
  20. 20.
    Han DM, Guo ZP, Zeng R, Kim CJ, Meng YZ, Liu HK (2009) Int J Hydrogen Energy 34:2426CrossRefGoogle Scholar
  21. 21.
    Koch DFA, Rand DAG, Woods R (1976) J Electroanal Chem 70:73CrossRefGoogle Scholar
  22. 22.
    Ordonez LC, Roquero P, Sebastian PJ, Ramirez J (2007) Int J Hydrogen Energy 32:3147CrossRefGoogle Scholar
  23. 23.
    Corbierre MK, Lennox RB (2005) Chem Mater 17:5691CrossRefGoogle Scholar
  24. 24.
    Yee CK, Jordan R, Ulman A, White H et al (1999) Langmuir 15:3486CrossRefGoogle Scholar
  25. 25.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Chem Commun 7:801Google Scholar
  26. 26.
    Sen F, Gokagac G (2007) J Phys Chem C 111:1467Google Scholar
  27. 27.
    Sen F, Gokagac G (2007) J Phys Chem C 111:5715Google Scholar
  28. 28.
    Zhou W, Zhou Z, Song S, Li W, Sun G et al (2003) Appl Catal B 46:273CrossRefGoogle Scholar
  29. 29.
    Li H, Sun G, Li N, Sun S, Su D, Xin Q (2007) J Phys Chem C 111:5605Google Scholar
  30. 30.
    Powder Diffraction File—Inorganic Compounds (Card 04-802) (1984) JCPDS International Centre for Diffraction Data, PhiladelphiaGoogle Scholar
  31. 31.
    Powder Diffraction File—Inorganic Compounds (Card 46-1043) (1997) JCPDS International Centre for Diffraction Data, PennsylvaniaGoogle Scholar
  32. 32.
    Radmilovic V, Gasteiger HA, Ross PN (1995) J Catal 154:98CrossRefGoogle Scholar
  33. 33.
    Angelucci CA, D’Villa Silva M, Nart FC (2007) Electrochim Acta 52:7293CrossRefGoogle Scholar
  34. 34.
    Renouprez AJ, Malhomme A, Massardier J, Cattenot M, Bergeret G (2000) Stud Surf Sci Catal 130:2579CrossRefGoogle Scholar
  35. 35.
    Morfin F, Sabroux JC, Renouprez AJ (2004) Appl Catal B 47:47CrossRefGoogle Scholar
  36. 36.
    Klug H, Alexander L (eds) (1962) X-ray diffraction procedures. Wiley, New YorkGoogle Scholar
  37. 37.
    Kadirgan F, Beyhan S, Atilan T (2009) Int J Hydrogen Energy 34:4312CrossRefGoogle Scholar
  38. 38.
    Allen GC, Tucker PM, Capon A, Parsons P (1974) J Electroanal Chem 50(50):335CrossRefGoogle Scholar
  39. 39.
    Kennedy BJ, Hammett A (1990) J Electroanal Chem 283:271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of ChemistryMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of ChemistryYuzuncu Yil UniversityVanTurkey

Personalised recommendations