Journal of Materials Science

, Volume 47, Issue 24, pp 8360–8366

Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials

  • I. Kaban
  • M. Köhler
  • L. Ratke
  • R. Nowak
  • N. Sobczak
  • N. Mattern
  • J. Eckert
  • A. L. Greer
  • S. W. Sohn
  • D. H. Kim
HTC 2012

Abstract

The mechanism of liquid–liquid phase separation and factors determining the solid-state microstructure of monotectic alloys are discussed. The effect of the cooling rate on the phase-separated morphology is shown in examples of Al–In, Al–Pb, Ni–Nb–Y and Zr–Gd–Co–Al alloys solidified by different techniques. A remarkable improvement of the microstructure for the Al91Pb9 hypermonotectic alloy cast with TiB2 particles, which catalyze the phase separation, is demonstrated.

References

  1. 1.
    Vogel W (1979) Glasschemie. VEB Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  2. 2.
    Kelton KF, Greer AL (2010) Nucleation in condensed matter: applications in materials and biology. Elsevier (Pergamon Materials Series), AmsterdamGoogle Scholar
  3. 3.
    Cahn JW (1968) Trans Metall Soc AIME 242:166Google Scholar
  4. 4.
    Zhao JZ, Ratke L, Feuerbacher B (1998) Model Simul Mater Sci Eng 6:123CrossRefGoogle Scholar
  5. 5.
    Zhao J, Ratke L, Jia J, Li Q (2002) J Mater Sci Technol 18:197Google Scholar
  6. 6.
    Greer SC (1978) Acc Chem Res 11:427CrossRefGoogle Scholar
  7. 7.
    Cahn JW (1969) J Am Chem Soc 52:118Google Scholar
  8. 8.
    Perepezko JH, Galaup C, Cooper KP (1982) In: Rindone GE (ed) Materials processing in reduced gravity environment of space. Elsevier, Amsterdam, p 491Google Scholar
  9. 9.
    Uebber N, Ratke L (1991) Scr Metall Mater 25:1133CrossRefGoogle Scholar
  10. 10.
    Ratke L, Thieringer WK (1985) Acta Metall 33:1793CrossRefGoogle Scholar
  11. 11.
    Ratke L (1987) J Colloid Interface Sci 119:391CrossRefGoogle Scholar
  12. 12.
    Wu M, Ludwig A, Ratke L (2003) Metall Mater Trans A 34:3009CrossRefGoogle Scholar
  13. 13.
    Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A (2008) Mater Sci Eng A 495:43CrossRefGoogle Scholar
  14. 14.
    Chatain D, Wynblatt P, de Ruijter M, de Conninck J, Carter C (1999) Acta Mater 47:3049CrossRefGoogle Scholar
  15. 15.
    Porai-Koshits EA, Averjanov VI (1968) J Non-Cryst Solids 1:29CrossRefGoogle Scholar
  16. 16.
    Uhlmann DR, Kolbeck AG (1976) Phys Chem Glasses 17:146Google Scholar
  17. 17.
    Andrikopoulos KS, Arvanitidis J, Dracopoulos V, Christofilos D, Wagner T, Yannopoulos SN (2011) Appl Phys Lett 99:171911CrossRefGoogle Scholar
  18. 18.
    Kündig AA, Ohnuma M, Ping DH, Ohkubo T, Hono K (2004) Acta Mater 52:2441CrossRefGoogle Scholar
  19. 19.
    Park BJ, Chang HJ, Kim DH, Kim WT, Chattopadhyay K, Abinandanan TA, Bhattacharyya (2006) Phys Rev Lett 96:245503CrossRefGoogle Scholar
  20. 20.
    Mattern N, Kühn U, Gebert A, Gemming T, Zinkevich M, Wendrock H, Schultz L (2005) Scr Mater 53:271CrossRefGoogle Scholar
  21. 21.
    Han JH, Mattern N, Kim DH, Eckert J (2011) J Alloy Compd 509S:S42CrossRefGoogle Scholar
  22. 22.
    Mattern N, Shariq A, Schwarz B, Vainio U, Eckert J (2012) Acta Mater 60:1946CrossRefGoogle Scholar
  23. 23.
    Rowlinson SS, Widom B (1982) Molecular theory of capillarity. Clarendon Press, OxfordGoogle Scholar
  24. 24.
    Kaban IG, Hoyer W (2008) Phys Rev B 77:125426CrossRefGoogle Scholar
  25. 25.
    Kaban I, Curiotto S, Chatain D, Hoyer W (2010) Acta Mater 58:3406CrossRefGoogle Scholar
  26. 26.
    Kaban I, Köhler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer AL (2011) Acta Mater 59:6880CrossRefGoogle Scholar
  27. 27.
    Moiseev J, Zak H, Palkowski H, Tonn B (2005) Aluminium 81:92Google Scholar
  28. 28.
    Ratke L, Brück S, Mathiesen R, Ludwig A, Gruber-Pretzler M, Tonn B, Gzovskyy K, Gránásy L, Tegze G, Ågren J, Hoglund L, Arnberg L, Gust E, Anger G, Lauer M, Garen R, Reifenhäuser B (2007) Trans Indian Inst Metals 60:103Google Scholar
  29. 29.
    Turnbull D (1950) J Appl Phys 21:1022CrossRefGoogle Scholar
  30. 30.
    Greer AL (2010) Scr Mater 62:899CrossRefGoogle Scholar
  31. 31.
    Kaban I, Köhler M, Hoyer W, Ratke L (2010) High Temp High Press 39:347Google Scholar
  32. 32.
    Köhler M, Ratke L, Kaban I, Hoyer W (2011) IOP Conf Ser Mater Sci Eng 27:012005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • I. Kaban
    • 1
  • M. Köhler
    • 2
  • L. Ratke
    • 2
  • R. Nowak
    • 3
  • N. Sobczak
    • 3
  • N. Mattern
    • 1
  • J. Eckert
    • 1
    • 4
  • A. L. Greer
    • 5
  • S. W. Sohn
    • 6
  • D. H. Kim
    • 6
  1. 1.IFW DresdenInstitute for Complex MaterialsDresdenGermany
  2. 2.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany
  3. 3.Center for High-Temperature StudiesFoundry Research InstituteCracowPoland
  4. 4.TU DresdenInstitute of Materials ScienceDresdenGermany
  5. 5.Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeUK
  6. 6.Department of Metallurgical Engineering, Center for Noncrystalline MaterialsYonsei UniversitySeoulKorea

Personalised recommendations