Journal of Materials Science

, Volume 47, Issue 21, pp 7385–7398 | Cite as

First-principles models for phase stability and radiation defects in structural materials for future fusion power-plant applications

  • D. Nguyen-Manh
  • M. Yu. Lavrentiev
  • M. Muzyk
  • S. L. Dudarev
First Principles Computations

Abstract

Generic materials-related problems foreseen in connection with the operation of a fusion power plant present a major challenge for the development of magnetically confined fusion as a commercial power generation option. In this review, we focus on the predictive capabilities of first-principles-based atomistic models for radiation defects and phase stability of body-centred cubic Fe–Cr-based ferritic-martensitic and ferritic steels and tungsten alloys, which are presently under consideration as candidate structural materials for the first wall and diverter applications. Density-functional calculations predict that low-Cr iron alloys are stabilized by intra-atomic exchange, giving rise to magnetism and changes in interatomic chemical bonding. Magnetic effects are also responsible for the fact that the atomic structure of radiation defects in iron and steels is different from the structure of defects formed under irradiation in non-magnetic body-centred cubic metals, for example vanadium or tungsten. Ab initio-based magnetic cluster expansion-based Monte–Carlo simulations showed unusual non-collinear magnetic configurations forming at interfaces and around Cr precipitates in FeCr alloys. In W–Ta and W–V alloys, ab initio calculations helped to identify several low temperature ordered inter-metallic phases that are not included in the existing phase diagrams based on high-temperature experimental data. Ab initio calculations have also made it possible to predict atomic structures of point defects formed in these alloys under irradiation.

Notes

Acknowledgements

This work, part-funded by the European Communities under the contract of Association between EURATOM and CCFE, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the RCUK Energy Programme under grant EP/I501045. DNM would like to thank Dr. P. Norajitra for the permission to use his DEMO design sketch in Fig. 1 from the FZKA [75].

References

  1. 1.
    Möslang A (2008) CR Phys 9:457CrossRefGoogle Scholar
  2. 2.
    Dudarev SL, Boutard J-L, Lässer R, Caturla MJ, Derlet PM, Fivel M, Fu C-C, Lavrentiev MY, Malerba L, Mrovec M, Nguyen-Manh D, Nordlund K, Perlado M, Schäublin R, Van Swygenhoven H, Terentyev D, Wallenius J, Weygand D, Willaime F (2009) J Nucl Mater 1:386Google Scholar
  3. 3.
    Boutard J-L, Dudarev SL, Rieth M (2011) J Nucl Mater 417:1042CrossRefGoogle Scholar
  4. 4.
    Rieth M, Boutard JL, Dudarev SL, Ahlgren T, Antusch S, Baluc N, Barthe M-F, Becquart CS, Ciupinski L, Correia JB, Domain C, Fikar J, Fortuna E, Fu C–C, Gaganidze E, Galán TL, García-Rosales C, Gludovatz B, Greuner H, Heinola K, Holstein N, Juslin N, Koch F, Krauss W, Kurzydlowski KJ, Linke J, Linsmeier Ch, Luzginova N, Maier H, Martínez MS, Missiaen JM, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Norajitra P, Opschoor J, Pintsuk G, Pippan R, Ritz G, Romaner L, Rupp D, Schäublin R, Schlosser J, Uytdenhouwen I, van der Laan JG, Veleva L, Ventelon L, Wahlberg S, Willaime F, Wurster S, Yar MA (2011) J Nucl Mater 417:463CrossRefGoogle Scholar
  5. 5.
    Nguyen-Manh D, Horsfield AP, Dudarev SL (2006) Phys Rev B 73:020101CrossRefGoogle Scholar
  6. 6.
    Kenny SD, Horsfield AP (2009) Comput Phys Commun 180:2616CrossRefGoogle Scholar
  7. 7.
    Soin P, Horsfield AP, Nguyen-Manh D (2011) Comput Phys Commun 182:1350CrossRefGoogle Scholar
  8. 8.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  9. 9.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  10. 10.
    Kresse G, Hafner J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  11. 11.
    Nguyen-Manh D, Dudarev SL, Horsfield AP (2007) J Nucl Mater 367:257CrossRefGoogle Scholar
  12. 12.
    Muzyk M, Nguyen-Manh D, Kurzydlovski KJ, Baluc NL, Dudarev SL (2011) Phys Rev B 84:104115CrossRefGoogle Scholar
  13. 13.
    Perdew P, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  14. 14.
    Derlet PM, Nguyen-Manh D, Dudarev SL (2007) Phys Rev B 76:054107CrossRefGoogle Scholar
  15. 15.
    Hartwigsen, Goedecker S, Hutter J (1998) Phys Rev B 58:3641CrossRefGoogle Scholar
  16. 16.
    Fitzgerald SP, Nguyen-Manh D (2008) Phys Rev Lett 101:115504CrossRefGoogle Scholar
  17. 17.
    Ehrhart P, Jung P, Shultz H, Ullmaier H (1991) In: Ullmaier H (ed) Atomic defects in metals, Landolt–Bornstein new series, group III, vol 25. Springer, BerlinGoogle Scholar
  18. 18.
    van de Walle CA (2009) CALPHAD 33:266CrossRefGoogle Scholar
  19. 19.
    Lavrentiev MYu, Drautz R, Nguyen-Manh D, Klaver TPC, Dudarev SL (2007) Phys Rev B 75:014208CrossRefGoogle Scholar
  20. 20.
    Nguyen-Manh D, Muzyk M, Kurzydłowski KJ, Baluc NL, Reith M, Dudarev SL (2011) Key Eng Mater 465:15CrossRefGoogle Scholar
  21. 21.
    Nguyen-Manh D, Dudarev SL (2009) Phys Rev B 80:104440CrossRefGoogle Scholar
  22. 22.
    Anderson PW (1963) In: Seitz F, Turnbull D (ed) Solid state physics, vol 14. Academic, New York, p 99Google Scholar
  23. 23.
    Caroli B, Caroli C, Fredkin DR (1969) Phys Rev 178:599CrossRefGoogle Scholar
  24. 24.
    Kotani A, Yamazaki T (1992) Prog Theor Phys 108:117CrossRefGoogle Scholar
  25. 25.
    Dudarev SL, Nguyen-Manh D, Sutton AP (1997) Philos Mag. B 75:613CrossRefGoogle Scholar
  26. 26.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505CrossRefGoogle Scholar
  27. 27.
    Hasegawa H, Finnis MW, Pettifor DG (1985) J Phys F Met Phys 15:19CrossRefGoogle Scholar
  28. 28.
    Liu G, Nguyen-Manh D, Liu B-G, Pettifor DG (2005) Phys Rev B 71:174115CrossRefGoogle Scholar
  29. 29.
    Nguyen-Manh D, Vitek V, Horsfield AP (2007) Prog Mater Sci 52:255CrossRefGoogle Scholar
  30. 30.
    Nguyen-Manh D, Lavrentiev MY, Dudarev SL (2007) J Comp Aid Mater Des 14:159CrossRefGoogle Scholar
  31. 31.
    Nguyen-Manh D, Lavrentiev MYu, Dudarev SL (2008) C R Phys 9:379CrossRefGoogle Scholar
  32. 32.
    Nguyen-Manh D, Lavrentiev MYu, Dudarev SL (2008) Comp Mater Sci 44:1CrossRefGoogle Scholar
  33. 33.
    Mrovec M, Nguyen-Manh D, Elsasser C, Gumbsch P (2011) Phys Rev Lett 106:246402CrossRefGoogle Scholar
  34. 34.
    Lavrentiev MYu, Dudarev SL, Nguyen-Manh D (2009) J Nucl Mater 386–388:22CrossRefGoogle Scholar
  35. 35.
    Lavrentiev MYu, Nguyen-Manh D, Dudarev SL (2010) Phys Rev B 81:184202CrossRefGoogle Scholar
  36. 36.
    Lavrentiev MYu, Mergia K, Gjoka M, Nguyen-Manh D, Apostolopoulos G, Dudarev SL (2012) J Phys Conden Mater, submitted for publicationGoogle Scholar
  37. 37.
    Lavrentiev MYu, Soulairol R, Chu-Chun Fu, Nguyen-Manh D, Dudarev SL (2011) Phys Rev B 84:144203CrossRefGoogle Scholar
  38. 38.
    Cook I (2006) Nat Mater 5:77CrossRefGoogle Scholar
  39. 39.
    Boutard JL, Alamo A, Lindaum R, Rieth M (2008) CR Phys 9:287CrossRefGoogle Scholar
  40. 40.
    Domain C, Becquart CS (2001) Phys Rev B 65:024103CrossRefGoogle Scholar
  41. 41.
    Fu C–C, Willaime F, Ordejon P (2004) Phys Rev Lett 92:175503CrossRefGoogle Scholar
  42. 42.
    Ehrhart P, Robrock KH, Schober HR (1986) In: Johnson RA, Orlov AN (eds) Physics of radiation effects in crystals. Elsevier, Amsterdam, p 63Google Scholar
  43. 43.
    Ackland GJ, Thetford R (1987) Philos Mag A 56:15CrossRefGoogle Scholar
  44. 44.
    Nguyen-Manh D, Mrovec M, Fitzgerald S (2008) Mater Trans 49:2497CrossRefGoogle Scholar
  45. 45.
    Neklyudov IM, Sadanov EV, Tolstolutskaja GD, Ksenofontov VA, Mazilova TI, Mikhailovskij IM (2008) Phys Rev B 78:115418CrossRefGoogle Scholar
  46. 46.
    Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M, Mori H (2007) Science 318:956CrossRefGoogle Scholar
  47. 47.
    Amiro T, Arakawa K, Mori H (2011) Philos Mag Lett 91:86CrossRefGoogle Scholar
  48. 48.
    Marinica M-C, Willaime F, Crocombette J-P (2012) Phys Rev Lett 108:025501CrossRefGoogle Scholar
  49. 49.
    Koyama A, Hishinuma A, Gelles DS, Klueh RL, Dietz W, Ehrlich K (1996) J Nucl Mater 233–237:138CrossRefGoogle Scholar
  50. 50.
    Little EA, Stow DA (1979) J Nucl Mater 87:25CrossRefGoogle Scholar
  51. 51.
    Lavrentiev MYu, Nguyen-Manh D, Dudarev SL (2010) Comput Mater Sci 49:S199CrossRefGoogle Scholar
  52. 52.
    Chen Q, Sundman B (2001) J Ph Equilib 22:631Google Scholar
  53. 53.
    Weiss RJ, Tauer KJ (1956) Phys Rev 102:1490CrossRefGoogle Scholar
  54. 54.
    Nagender Naidu SV, Sriramamurthy AM, Vijyakumar M, Rama Rao P (1989) In: Smith JE (ed) V–W (Vanadium-Tungsten), phase diagrams of binary vanadium alloys. ASM International, Materials Park, OH, pp 313–317Google Scholar
  55. 55.
    Massalski TB (ed) (1990) Binary alloy phase diagrams. ASM International, Materials Park, OHGoogle Scholar
  56. 56.
    Scientific Group Thermodata Europe (SGTE) (2006) Binary systems from Mn–Mo to Y–Zr, Band 17, Teil 4, Landolt–Bornstein: numerical data and functional relationships in science and technology, new series. Springer, New YorkGoogle Scholar
  57. 57.
    Singhal SC, Worrell WL (1973) Metall Trans 4:895CrossRefGoogle Scholar
  58. 58.
    Blum V, Zunger A (2005) Phys Rev B 72:020104CrossRefGoogle Scholar
  59. 59.
    Oganov AR, Chen J, Gatti C, Ma YZ, Ma YM, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Nature (London) 457:863CrossRefGoogle Scholar
  60. 60.
    Kolmogorov AN, Shah S, Margine ER, Bialon AF, Hammerschmidt T, Drautz R (2010) Phys Rev Lett 105:217003CrossRefGoogle Scholar
  61. 61.
    Masters BC (1963) Nature (London) 200:254CrossRefGoogle Scholar
  62. 62.
    Masters BC (1965) Philos Mag 11:881CrossRefGoogle Scholar
  63. 63.
    Dudarev SL, Bullough R, Derlet PM (2008) Phys Rev Lett 100:135503CrossRefGoogle Scholar
  64. 64.
    Massumoto H, Kikuchi M (1971) Trans Jpn Inst Met 12:90Google Scholar
  65. 65.
    Muzyk M, Nguyen-Manh D, Wrobel J, Kurzydlowski KJ, Baluc NL, Dudarev SL (2012) J Nucl Mater Google Scholar
  66. 66.
    Costa BFO, Cieslak J, Dubiel SM (2010) J Alloys Comp 492:L1CrossRefGoogle Scholar
  67. 67.
    Dubiel SM, Cieslak J, Sturhahn W, Sternik M, Piekarz P, Stankov S, Parlinski K (2010) Phys Rev Lett 104:155503CrossRefGoogle Scholar
  68. 68.
    Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, BerkeleyGoogle Scholar
  69. 69.
    Castin N, Bonny G, Terentyev D, Lavrentiev MYu, Nguyen-Manh D (2011) J Nucl Mater 417:1086CrossRefGoogle Scholar
  70. 70.
    Bley F (1992) Acta Metall Mater 40:1505CrossRefGoogle Scholar
  71. 71.
    Novy S, Pareige P, Pareige C (2009) J Nucl Mater 384:96CrossRefGoogle Scholar
  72. 72.
    Van der Ven A et al (2001) Phys Rev B 64:184307CrossRefGoogle Scholar
  73. 73.
    Van der Ven A, Ceder G (2005) Phys Rev B 71:054102CrossRefGoogle Scholar
  74. 74.
    Lavrentiev MYu, Nguyen-Manh D, Dudarev SL (2010) Proceedings of the Fifth International Conference “Multiscale Materials Modeling”, Freiburg, Germany, p 703Google Scholar
  75. 75.
    Norajitra P, Buhler L, Buenaventura A, Diegele E, Fischer U, Gordeev S, Hutter E, Kruessmann R, Malang S, Orden A, Reimann G, Reimann J, Vieider G, Ward D, Wasastjerna F (2003) Conceptual design of the dual-coolant blanket within the framework of the EU power plant study (TW2-TRP-PPCS12), Final report, FZKA 6780, May 2003Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. Nguyen-Manh
    • 1
  • M. Yu. Lavrentiev
    • 1
  • M. Muzyk
    • 1
  • S. L. Dudarev
    • 1
  1. 1.EURATOM/CCFE Fusion AssociationCulham Science CentreAbingdon, OxfordshireUK

Personalised recommendations