Journal of Materials Science

, Volume 47, Issue 19, pp 6992–7002 | Cite as

The comparative influences of structural ordering, grain size, Li-content, and bulk density on the Li+-conductivity of Li0.29La0.57TiO3

  • Anthony C. Sutorik
  • Matthew D. Green
  • Christopher Cooper
  • Jeffrey Wolfenstine
  • Gary Gilde
Article

Abstract

The lattice and total Li+-ionic conductivity of Li0.29La0.57TiO3 ceramic (LLTO) sintered at 1200 °C were determined as functions of powder calcination temperature and sintering duration, and these results were correlated with the relative degrees of Li+-ordering, Li-content, grain size, and bulk density to assess the relative impact of these parameters on material performance. Under all conditions, LLTO formed with a high degree of tetragonal superstructure to its perovskite related framework, and the lattice conductivity closely followed the relative amounts of the superstructure, as evaluated via determination of the sample ordering parameter from X-ray diffraction data. LLTO powders that were calcined at 900 °C for 1 h and sintered at 1200 °C for 6 h gave lattice conductivity values (~1.14 × 10−3 S cm−1) comparable within the highest ranges reported in the literature. This coincided with the lowest degree of tetragonal superstructure formation, and it was also found to be largely independent of the values of Li-content measured on sintered ceramic despite significant Li2O volatilization at longer sintering times (up to 23 % after 12 h at 1200 °C). Samples of LLTO powder that were calcined at 1100 °C and sintered at 1200 °C for 12 h resulted in the highest total Li-ion conductivity value ~6.30 × 10−5 S cm−1. The total conductivity of LLTO varied inversely with grain size when the grains were <20 μm but was insensitive to that parameter above that size threshold. The strongest influence on total conductivity was primarily the bulk ceramic density. It was estimated from measured values that as the bulk ceramic density approached the full theoretical value for LLTO the total conductivity could near the lattice conductivity of ~1.2 × 10−3 S cm−1.

References

  1. 1.
    Abraham K (2008) ECS Trans 3:67CrossRefGoogle Scholar
  2. 2.
    Wolfenstine J, Allen JL, Read J, Sakamoto J, Gonalez-Doncel G (2010) J Power Sources 195:4121CrossRefGoogle Scholar
  3. 3.
    Okumura T, Yokoo K, Fukutsuka T, Uchimoto Y, Saito M, Amezawa K (2009) J Power Sources 189:536CrossRefGoogle Scholar
  4. 4.
    Ban WB, Choi MG (2001) Solid State Ion 140:285CrossRefGoogle Scholar
  5. 5.
    Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15:3974CrossRefGoogle Scholar
  6. 6.
    Yang K-Y, Wang J-W, Fung K-Z (2008) J Alloys Compd 458:415CrossRefGoogle Scholar
  7. 7.
    Chen C, Amine K (2001) Solid State Ion 144:51CrossRefGoogle Scholar
  8. 8.
    Harada Y, Ishigaki T, Kawai H, Kuwano J (1998) Solid State Ion 108:407CrossRefGoogle Scholar
  9. 9.
    Harada Y, Hirakoso Y, Kawai H, Kuwano J (1999) Solid State Ion 121:245CrossRefGoogle Scholar
  10. 10.
    Bohnke O, Bohnke C, Fourquet JL (1996) Solid State Ion 91:21CrossRefGoogle Scholar
  11. 11.
    Garcia-Martin S, Alario-Franco MA, Ehrenberg H, Rodiguez-Carvajal J, Amador U (2004) J Am Chem Soc 126:3587CrossRefGoogle Scholar
  12. 12.
    Inaguma Y, Katsumata T, Itoh M, Morii Y, Tsurui T (2006) Solid State Ion 177:3037CrossRefGoogle Scholar
  13. 13.
    Inoue N, Zou Y (2006) Phys Solid State Ion 247–269Google Scholar
  14. 14.
    Mendelson MI (1969) J Am Ceram Soc 52:443CrossRefGoogle Scholar
  15. 15.
    Skapin SD, Kolar D, Suvorov D (2000) J Eur Ceram Soc 20:1179CrossRefGoogle Scholar
  16. 16.
    Huggins RA (2002) Ionics 8:300CrossRefGoogle Scholar
  17. 17.
    Bauerle JE (1969) J Phys Chem Solids 30:2657CrossRefGoogle Scholar
  18. 18.
    Orazem ME, Tilbollet B (2008) Electrochemical impedance spectroscopy. Wiley, PenningtonCrossRefGoogle Scholar
  19. 19.
    Verkerk MJ, Middlehuis BJ, Burggraaf AJ (1982) Solid State Ion 6:159CrossRefGoogle Scholar
  20. 20.
    Apetz R, van Bruggen MPB (2003) J Am Ceram Soc 86:480CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • Anthony C. Sutorik
    • 1
  • Matthew D. Green
    • 1
  • Christopher Cooper
    • 1
  • Jeffrey Wolfenstine
    • 2
  • Gary Gilde
    • 1
  1. 1.U.S. Army Research LaboratoryRDRL WMM EAberdeen Proving GroundUSA
  2. 2.U.S. Army Research LaboratoryRDRL SED CAdelphiUSA

Personalised recommendations