Skip to main content

Supersaturated α-iron in vapour-deposited Fe–C thin films

Abstract

While the conventional Fe–C phase diagram predicts negligible solubility of carbon in α-Fe at room temperature, there are many examples where substantial carbon supersaturations have been reported. Non-equilibrium processing routes, such as physical vapour deposition (PVD), appear to be particularly well suited to generating very high levels of supersaturation. Few descriptions of the stability and microstructure of the supersaturated state exist, however. In this study, experiments have been performed using two PVD techniques allowing for the production of nanocrystalline films containing between 11 and 16 at% C. Transmission electron microscopy and electron energy loss spectroscopy reveal no phase other than a nearly body-centred cubic iron in the as-deposited films. This result is discussed with respect to the kinetics of carbon rearrangement and the possibility of the stabilization of the supersaturated state via defects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Hansen M, Elliott RP (1958) Constitution of binary alloys, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  2. Gridnev V, Gavrilyuk V (1982) Phys Met 4(3):531

    Google Scholar 

  3. Ivanisenko Y, Baumann G, Fecht G, Knote K, Saarov N, Korznikov A, Valiyev R (1997) Fiz Metallov I Metalloved 83(3):104

    CAS  Google Scholar 

  4. Takahashi J, Kawakami K, Ueda M (2010) Acta Mater 58(10):3602

    Article  CAS  Google Scholar 

  5. Li YJ, Choi P, Borchers C, Westerkamp S, Goto S, Raabe D, Kirchheim R (2011) Acta Mater 59(10):3965

    Article  CAS  Google Scholar 

  6. Ivanisenko Y, MacLaren I, Sauvage X, Valiev RZ, Fecht HJ (2006) High Press Technol Nanomater 114:133

    CAS  Google Scholar 

  7. Dahlgren S, Merz M (1971) Metall Trans 2(7):1753

    CAS  Google Scholar 

  8. Bauergrosse E, Lecaer G (1986) J Phys F 16(4):399

    Article  CAS  Google Scholar 

  9. Lecaer G, Bauergrosse E (1989) Hyperfine Interact 47(8(1–4):55

    Google Scholar 

  10. Bauergrosse E, Morniroli J, Lecaer G, Frantz C (1981) Acta Metall 29(12):1983

    Article  CAS  Google Scholar 

  11. Boswell P, Chadwick G (1976) J Mater Sci 11(12):2287. doi:10.1007/BF00752093

    Article  CAS  Google Scholar 

  12. Zhang H, Ohsaki S, Mitao S, Ohnuma A, Hono K (2006) Mater Sci Eng A 421(1–2):191

    Google Scholar 

  13. Lojkowski W, Djahanbakhsh M, Burkle G, Gierlotka S, Zielinski W, Fecht H (2001) Mater Sci Eng A 303(1–2):197

    Google Scholar 

  14. Languillaume J, Kapelski G, Baudelet B (1997) Acta Mater 45(3):1201

    Article  CAS  Google Scholar 

  15. Scott C, Guelton N (2006) Rev De Metall-Cah Inform Tech 103(10):458

    CAS  Google Scholar 

  16. Pringle O, Long G, Li J, James W, Grandjean F, Hadjipanayis G (1992) IEEE Trans Magn 28(5):2862

    Article  CAS  Google Scholar 

  17. Kazama N, Heiman N, White R (1978) J Appl Phys 49(3):1706

    Article  CAS  Google Scholar 

  18. Aouni A, Bauer-Grosse E (2002) J Alloy Compd 335(1–2):157

    Article  CAS  Google Scholar 

  19. Jouanny I, Billard A, Loi T, Demange V, Bauer-Grosse E (2005) Surf Coat Technol 200(5–6):1690

    Article  CAS  Google Scholar 

  20. Jouanny I, Demange V, Ghanbaja J, Bauer-Grosse E (2010) J Mater Res 25(9):1859

    Article  CAS  Google Scholar 

  21. Bauer-Grosse E (2004) Thin Solid Films 447:311

    Article  Google Scholar 

  22. Bauer-Grosse E, Aouni A (2007) J Non-Cryst Solids 353(32–40):3644

    Article  CAS  Google Scholar 

  23. Cao Y, Ernst F, Michal G (2003) Acta Mater 51(14):4171

    Article  CAS  Google Scholar 

  24. Scott CP, Sinclair CW, Weck A (2011) Scr Mater 65:763

    Article  CAS  Google Scholar 

  25. Johnson PC (1991) In: Vossen JL, Kern W (eds) Thin film processes II, chap. 5. Academic Press, Boston, pp 209–275

  26. Ohring M (1992) The materials science of thin films. Academic Press, Boston

    Google Scholar 

  27. RR Parsons (1991) In: Vossen JL, Kern W (eds) Thin film processes II, chap. 4. Academic Press, Boston, pp 177–208

  28. Scott CP, Drillet J (2007) Scr Mater 56(6):489

    Article  CAS  Google Scholar 

  29. Pouchou J, Pichoir F (1990) Scanning 12(4):212

    Article  CAS  Google Scholar 

  30. Petrov I, Barna P, Hultman L, Greene J (2003) J Vac Sci Technol A 21(5):S117

    Article  CAS  Google Scholar 

  31. Mi W, Li Z, Wu P, Jiang E, Bai H, Hou D, Li X (2005) J Appl Phys 97(4):043903

    Article  Google Scholar 

  32. He K, Brown A, Brydson R, Edmonds DV (2006) J Mater Sci 41(16):5235. doi:10.1007/s10853-006-0588-4

    Article  CAS  Google Scholar 

  33. Hamon A, Verbeeck J, Schryvers D, Benedikt J, Vander Sanden R (2004) J Mater Chem 14(13):2030

    Article  CAS  Google Scholar 

  34. Sinclair CW, Perez M, Veiga RGA, Weck A (2010) Phys Rev B 81(22):224204

    Article  Google Scholar 

  35. Udyansky A, von Pezold J, Bugaev VN, Friak M, Neugebauer J (2009) Phys Rev B 79(22):224112

    Article  Google Scholar 

  36. Liu X, Zhong F, Zhang J, Zang M, Kang M, Guo Z (1995) Phys Rev B 52(14):9970

    Article  CAS  Google Scholar 

  37. Clouet E, Garruchet S, Nguyen H, Perez M, Becquart CS (2008) Acta Mater 56(14):3450

    Article  CAS  Google Scholar 

  38. Chakravarty S, Jiang M, Tietze U, Lott D, Geue T, Stahn J, Schmidt H (2011) Acta Mater 59(14):5568

    Article  CAS  Google Scholar 

  39. Domain C, Becquart C, Foct J (2004) Phys Rev B 69(14):144112

    Article  Google Scholar 

  40. Mclellan R, Wasz M (1993) J Phys Chem Solids 54(5):583

    Article  CAS  Google Scholar 

  41. Zener CM (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago

    Google Scholar 

  42. Hillert M (1959) Acta Metall 7(10):653

    Article  CAS  Google Scholar 

  43. Sauvage X, Quelennec X, Malandain J, Pareige P (2006) Scr Mater 54(6):1099

    Article  CAS  Google Scholar 

  44. Sauvage X, Lefebvre W, Genevois C, Ohsaki S, Hono K (2009) Scr Mater 60(12):1056

    Article  CAS  Google Scholar 

  45. Hong M, Hono K, Reynolds W, Tarui T (1999) Metall Mater Trans A 30(3):717

    Article  Google Scholar 

  46. Taylor K, Chang L, Olson G, Smith G, Cohen M, Vandersande J (1989) Metall Trans A 20(12):2717

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge fruitful discussions with X. Sauvage, M. Perez and J. D. Embury. This study was funded by ArcelorMittal and the Canadian Natural Sciences and Engineering Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weck.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weck, A., Sinclair, C.W., Scott, C.P. et al. Supersaturated α-iron in vapour-deposited Fe–C thin films. J Mater Sci 47, 6939–6947 (2012). https://doi.org/10.1007/s10853-012-6641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6641-6

Keywords

  • Cementite
  • Physical Vapour Deposition
  • Electron Energy Loss Spectroscopy
  • Supersaturated State
  • High Carbon Concentration