Skip to main content

Evolution of atomic and electronic structure of magnetic Gd-doped gold clusters

Abstract

The evolution of atomic and electronic structure of small Au n (n = 1–16, and 55) clusters doped with a Gd atom has been investigated using density functional theory within generalized gradient approximation for the exchange–correlation energy. Pure gold neutral clusters with n up to 15 are planar. However, with the doping of a Gd atom, the atomic structure of gold clusters changes, and there is a transition from planar-like structures to three dimensional structures at n = 10. The electronic structure of Gd-doped gold clusters shows a sharp increase in the highest occupied–lowest unoccupied molecular orbital (HOMO–LUMO) gap for certain sizes giving rise to their magic behavior. All clusters are magnetic with large magnetic moments ranging from 6 to 8 μB primarily due to the localized 4f electrons on Gd. This makes such clusters with large HOMO–LUMO gaps magnetic superatoms. The main interaction between gold and gadolinium atoms in the clusters is due to hybridization between Au-6s and Gd-5d6s orbitals. Our results indicate the emergence of a wheel structure for Gd@Au7, a symmetric cage structure at n = 15 for Gd@Au15 and n = 16 for Gd@Au16 + and Eu@Au16 corresponding to an electronic shell closing at 18 valence electrons leaving aside the f electrons on Gd while for Gd-doped Au55 corresponding to 58 valence electrons, a Au9Gd@Au46 core–shell structure is obtained in which the Gd atom connects the core of Au9 with the Au46 shell. The binding energy shows odd–even oscillations with enhancement due to Gd doping compared with pure gold clusters. Such magnetic clusters of gold could have multifunctional biological applications in drug delivery, sensor, imaging, and cancer treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Han G, Ghosh P, Rotello VM (2007) Nanomedicine (Lond) 2:113

    Article  CAS  Google Scholar 

  2. 2.

    Wang Y, Huang L (2012) Mol Therapy 20:10

    Article  CAS  Google Scholar 

  3. 3.

    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280

    Article  CAS  Google Scholar 

  4. 4.

    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:R167

    Article  CAS  Google Scholar 

  5. 5.

    Jiang DE, Whetten RL (2009) Phys Rev B 80:115402

    Article  Google Scholar 

  6. 6.

    Frimpong RA, Hilt JZ (2010) Nanomedicine (Lond) 5:1401

    Article  CAS  Google Scholar 

  7. 7.

    Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li CZ (2010) Curr Med Chem 17:3120

    Article  CAS  Google Scholar 

  8. 8.

    Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Adv Mater 22:2729

    Article  CAS  Google Scholar 

  9. 9.

    Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) J Nanosci Nanotechnol 8:3247

    Article  CAS  Google Scholar 

  10. 10.

    Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Nanomedicine (Lond) 2:23

    Article  CAS  Google Scholar 

  11. 11.

    Yadav BD, Kumar V (2010) Appl Phys Lett 97:133701

    Article  Google Scholar 

  12. 12.

    McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Nanomedicine (Lond) 2:153

    Article  CAS  Google Scholar 

  13. 13.

    Sandhu A, Handa H, Abe M (2010) Nanotechnology 21:442001

    Article  Google Scholar 

  14. 14.

    Wang L-M, Bai J, Lechtken A, Huang W, Schooss D, Kappes MM, Zeng XC, Wang L-S (2009) Phys Rev B 79:033413

    Article  Google Scholar 

  15. 15.

    Sun C, Lee JS, Zhang M (2008) Adv Drug Deliv Rev 60:1252

    Article  CAS  Google Scholar 

  16. 16.

    Wang J, Bai J, Jellinek J, Zeng XC (2007) J Am Chem Soc 129:4110

    Article  CAS  Google Scholar 

  17. 17.

    Ishida T, Haruta M (2007) Angew Chem Int Ed 46:7154

    Article  CAS  Google Scholar 

  18. 18.

    Yoon B, Koskinen P, Huber B, Kostko O, von Issendorff B, Hakkinen H, Moseler M, Landman U (2007) ChemPhysChem 8:157

    Article  CAS  Google Scholar 

  19. 19.

    Zhu Y, Qian H, Jin R (2011) J Mater Chem 21:6793

    Article  CAS  Google Scholar 

  20. 20.

    Jin R (2010) Nanoscale 2:343

    Article  CAS  Google Scholar 

  21. 21.

    Tong X, Benz L, Kemper P, Metiu H, Bowers MT, Buratto SK (2005) J Am Chem Soc 127:13516

    Article  CAS  Google Scholar 

  22. 22.

    Veldeman N, Lievens P, Andersson M (2005) J Phys Chem A 109:11793

    Article  CAS  Google Scholar 

  23. 23.

    Zhu M, Aikens CM, Hendrich MP, Rupal (2009) J Am Chem Soc 131:2490

    Article  CAS  Google Scholar 

  24. 24.

    Jia C-J, Liu Y, Bongard H, Schüth F (2010) J Am Chem Soc 132:1520

    Article  CAS  Google Scholar 

  25. 25.

    Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262

    Article  CAS  Google Scholar 

  26. 26.

    Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S, Bierweiler T, Kappes MM (2002) J Chem Phys 117:6982

    Article  CAS  Google Scholar 

  27. 27.

    Cabrera-Trujillo JM, Montejano-Carrizales JM, Rodríguez-López JL, Zhang W, Velázquez-Salazar JJ, José-Yacamán M (2010) J Phys Chem C 114:21051

    Article  CAS  Google Scholar 

  28. 28.

    Häkkinen H, Yoon B, Landman U, Li X, Zhai H-J, Wang L-S (2003) J Phys Chem A 107:6168

    Article  Google Scholar 

  29. 29.

    Häkkinen H, Moseler M, Landman U (2002) Phys Rev Lett 89:033401

    Article  Google Scholar 

  30. 30.

    Fernández EM, Balbás LC (2011) Phys Chem Chem Phys 13:20863

    Article  Google Scholar 

  31. 31.

    Huang W, Wang L-S (2009) Phys Rev Lett 102:153401

    Article  Google Scholar 

  32. 32.

    Bulusu S, Zeng XC (2006) J Chem Phys 125:154303

    Article  Google Scholar 

  33. 33.

    Li H, Pei Y, Zeng XC (2010) J Chem Phys 133:134707

    Article  Google Scholar 

  34. 34.

    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374

    Article  CAS  Google Scholar 

  35. 35.

    Uzun A, Ortalan V, Hao Y, Browning ND, Gates BC (2009) ACS Nano 3:3691

    Article  CAS  Google Scholar 

  36. 36.

    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331

    Article  CAS  Google Scholar 

  37. 37.

    Li C-Y, Wu C-M, Karna SK, Wang C-W, Hsu D, Wang C-J, Li W-H (2011) Phys Rev B 83:174446

    Article  Google Scholar 

  38. 38.

    Li X, Kiran B, Cui L-F, Wang L-S (2005) Phys Rev Lett 95:253401

    Article  Google Scholar 

  39. 39.

    Pyykkö P, Runeberg N (2002) Angew Chem Int Ed 41:2174

    Article  Google Scholar 

  40. 40.

    Li X, Kiran B, Li J, Zhai H-J, Wang L-S (2002) Angew Chem Int Ed 41:4786

    Article  CAS  Google Scholar 

  41. 41.

    Zhang M, He L-M, Zhao L-X, Feng X-J, Luo Y-H (2009) J Phys Chem C 113:6491

    Article  CAS  Google Scholar 

  42. 42.

    Kumar V, Kawazoe Y (2003) Appl Phys Lett 83:2677

    Article  CAS  Google Scholar 

  43. 43.

    Neukermans S, Wang X, Veldeman N, Janssens E, Silverans RE, Lievens P (2006) Int J Mass Spectrom 252:145

    Article  CAS  Google Scholar 

  44. 44.

    Yim H, Seo S, Na K (2011) J Nanomater Article 747196

  45. 45.

    Kumar V (2009) Phys Rev B 79:085423

    Article  Google Scholar 

  46. 46.

    Itoh M, Kumar V, Adschiri T, Kawazoe Y (2009) J Chem Phys 131:174510

    Article  Google Scholar 

  47. 47.

    Fernández EM, Soler JM, Garz′on IL, Balbás LC (2006) Phys Rev B 73:235433

    Article  Google Scholar 

  48. 48.

    Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  49. 49.

    Blöchl PE (1994) Phys Rev 50:17953

    Article  Google Scholar 

  50. 50.

    Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids 91. Akademie, Berlin

    Google Scholar 

  51. 51.

    Kumar V (2011) In: Sattler K (ed) Handbook of nanophysics: principles and methods. Taylor and Francis, Boca Raton, p 4-1

    Google Scholar 

  52. 52.

    Neukermans S, Janssens E, Tanaka H, Silverans RE, Lievens P (2003) Phys Rev Lett 90:033401

    Article  CAS  Google Scholar 

  53. 53.

    Janssens E, Tanaka H, Neukermans S, Silverans RE, Lievens P (2004) Phys Rev B 69:085402

    Article  Google Scholar 

  54. 54.

    Gao Y, Bulusu S, Zeng XC (2006) ChemPhysChem 7:2275

    Article  CAS  Google Scholar 

  55. 55.

    Reimann SM, Koskinen M, Häkkinen Lindelof PE, Manninen M (1997) Phys Rev B 56:12147

    Article  CAS  Google Scholar 

  56. 56.

    Dong CD, Gong XG (2010) J Chem Phys 132:104301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the staff of the Center for Development of Advanced Computing (CDAC) for allowing us to use the supercomputing facilities and for their excellent support. Partial support from Asian Office of Aerospace Research and Development is thankfully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shinde, P.P., Yadav, B.D. & Kumar, V. Evolution of atomic and electronic structure of magnetic Gd-doped gold clusters. J Mater Sci 47, 7642–7652 (2012). https://doi.org/10.1007/s10853-012-6632-7

Download citation

Keywords

  • Gold Cluster
  • Gold Atom
  • Magic Cluster
  • Small Gold Cluster
  • Large Homo