Journal of Materials Science

, Volume 47, Issue 18, pp 6647–6651 | Cite as

Hydrogen responses of ultrathin Pd films and nanowire networks with a Ti buffer layer

  • X. Q. Zeng
  • Y. L. Wang
  • Z. L. Xiao
  • M. L. Latimer
  • T. Xu
  • W. K. Kwok
Article

Abstract

We report on hydrogen responses of ultrathin films and nanowire networks of palladium on titanium buffered silicon substrates and filtration membranes, respectively. We found that in both systems signatures such as retarding responses and saturation of the resistance changes at high hydrogen concentrations associated with the transition from Pd/H solid solution to Pd hydride diminish with decreasing the thickness of the palladium layer from 7 to 2 nm. Our results not only reveal a new way to suppress the phase transition in Pd/H system but also provide an alternative approach to achieve fast and sensitive hydrogen sensors with a wide concentration detection range.

References

  1. 1.
    Buttner WJ, Post MB, Burgess R, Rivkin C (2011) Int J Hydropower Energy 36:2462CrossRefGoogle Scholar
  2. 2.
    Sakamoto Y, Takai K, Takashima I, Imada M (1996) J Phys Condens Matter 8:3399CrossRefGoogle Scholar
  3. 3.
    Noh JS, Lee JM, Lee W (2011) Sensors 11:825CrossRefGoogle Scholar
  4. 4.
    Yang F, Taggart DK, Penner RM (2009) Nano Lett 9:2177CrossRefGoogle Scholar
  5. 5.
    Yang F, Taggart DK, Penner RM (2010) Small 6:1422CrossRefGoogle Scholar
  6. 6.
    Zeng XQ, Latimer ML, Xiao ZL, Panuganti S, Welp U, Kwok WK, Xu T (2011) Nano Lett 11:262CrossRefGoogle Scholar
  7. 7.
    Thomas RC, Hughes RC (1997) J Electrochem Soc 144:3245CrossRefGoogle Scholar
  8. 8.
    Xu T, Zach MP, Xiao ZL, Rosenmann D, Welp U, Kwok WK, Crabtree GW (2005) Appl Phys Lett 86:203104CrossRefGoogle Scholar
  9. 9.
    Lee E, Lee JM, Lee E, Noh JS, Joe JH, Jung B, Lee W (2010) Thin Solid Films 519:880CrossRefGoogle Scholar
  10. 10.
    Zeng XQ, Wang YL, Deng H, Latimer ML, Xiao ZL, Pearson J, Xu T, Wang HH, Welp U, Crabtree GW, Kwok WK (2011) ACS Nano 5:7443CrossRefGoogle Scholar
  11. 11.
    Villanueva LG, Fargier F, Kiefer T, Ramonda M, Brugger J, Favier F (2012) Nanoscale 4:1964CrossRefGoogle Scholar
  12. 12.
    Kim KR, Noh JS, Lee JM, Kim YJ, Lee W (2011) J Mater Sci 46:1597. doi:10.1007/s10853-010-4970-x CrossRefGoogle Scholar
  13. 13.
    Hoogvliet JC, van Bennekom WP (2001) Electrochim Acta 47:599CrossRefGoogle Scholar
  14. 14.
    Bernhardt G, Silvestre C, LeCursi N, Moulzolf SC, Frankel DJ, Lad RJ (2001) Sens Actuators B 77:368CrossRefGoogle Scholar
  15. 15.
    Sondergard E, Kerjan O, Barreteau C, Jupille J (2004) Surf Sci 559:131CrossRefGoogle Scholar
  16. 16.
    Suleiman M, Jisrawi NM, Dankert O, Reetz MT, Bahtz C, Kirchheim R, Pundt A (2003) J Alloys Compd 356–357:644CrossRefGoogle Scholar
  17. 17.
    Ealet B, Robrieux B, Gillet EA (1992) J Adhes Sci Technol 6:1221CrossRefGoogle Scholar
  18. 18.
    Baba K, Miyagawa U, Watanabe K, Sakamoto Y, Flanagan TB (1990) J Mater Sci 25:3910. doi:10.1007/BF00582459 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • X. Q. Zeng
    • 1
    • 2
  • Y. L. Wang
    • 1
    • 3
  • Z. L. Xiao
    • 1
    • 3
  • M. L. Latimer
    • 1
    • 3
  • T. Xu
    • 1
    • 2
  • W. K. Kwok
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of Chemistry and BiochemistryNorthern Illinois UniversityDeKalbUSA
  3. 3.Department of PhysicsNorthern Illinois UniversityDeKalbUSA

Personalised recommendations