Journal of Materials Science

, Volume 47, Issue 18, pp 6601–6606 | Cite as

Preparation of amorphous TiS x thin film electrodes by the PLD method and their application to all-solid-state lithium secondary batteries

  • Takuya Matsuyama
  • Atsushi Sakuda
  • Akitoshi Hayashi
  • Yoshihiko Togawa
  • Shigeo Mori
  • Masahiro Tatsumisago


Titanium sulfide thin film electrodes were prepared by the pulsed laser deposition method using a KrF excimer laser. Thin films of various compositions were prepared under several deposition conditions such as Ar gas pressure, laser fluence, and target-substrate distance. The thickness of the titanium sulfide thin film prepared under Ar gas pressure of 0.01 Pa, the pulse energy of 200 mJ/pulse, and the distance of 5 cm between the target and the substrate was ca. 400 nm. The films prepared at room temperature showed no peaks in the XRD pattern and no periodic lattice fringe in high-resolution transmission electron microscopic images, suggesting that they were amorphous. An all-solid-state cell using a TiS4.0 thin film electrode formed on a pelletized Li2S–P2S5 glass–ceramic electrolyte showed the reversible capacity of 543 mAh g−1, which was higher than that of a cell using a TiS1.7 film. The former solid-state cell retained higher capacity for 20 cycles at room temperature.


Pulse Laser Deposition LiFePO4 P2S5 TiS2 Thin Film Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financially supported by Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) project.


  1. 1.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682CrossRefGoogle Scholar
  2. 2.
    Minami K, Hayashi A, Tatsumisago M (2011) J Am Ceram Soc 94:1779CrossRefGoogle Scholar
  3. 3.
    Komiya R, Hayashi A, Morimoto H, Tatsumisago M, Minami T (2001) Solid State Ionics 140:83CrossRefGoogle Scholar
  4. 4.
    Mizuno F, Hama S, Hayashi A, Tadanaga K, Minami T, Tatsumisago M (2002) Chem Lett 1244Google Scholar
  5. 5.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Power Sources 146:711CrossRefGoogle Scholar
  6. 6.
    Tatsumisago M, Hayashi A (2008) Funct Mater Lett 1:31CrossRefGoogle Scholar
  7. 7.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783CrossRefGoogle Scholar
  8. 8.
    Ohzuku T, Ueda A (1994) J Electrochem Soc 141:2972CrossRefGoogle Scholar
  9. 9.
    Ohta N, Takada K, Zhang L, Ma R, Osada M, Sakai T (2006) Adv Mater 18:2226CrossRefGoogle Scholar
  10. 10.
    Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2010) J Electrochem Soc 157:A407CrossRefGoogle Scholar
  11. 11.
    Mizuno F, Hayashi A, Tadanaga K, Minami T, Tatsumisago M (2003) J Power Sources 124:170CrossRefGoogle Scholar
  12. 12.
    Holleck GL, Driscoll JR (1977) Electrochim Acta 22:647CrossRefGoogle Scholar
  13. 13.
    Whittingham MS, Panella JA (1981) Mater Res Bull 16:37CrossRefGoogle Scholar
  14. 14.
    Iwamoto K, Aotani N, Takada K, Kondo S (1994) Solid State Ionics 70–71:658CrossRefGoogle Scholar
  15. 15.
    Trevey JE, Stoldt CR, Lee SH (2011) J Electrochem Soc 158:A1282CrossRefGoogle Scholar
  16. 16.
    Kanehori K, Matsumoto K, Miyauchi K, Kudo T (1983) Solid State Ionics 9–10:1445CrossRefGoogle Scholar
  17. 17.
    Jones SD, Akridge JR (1992) Solid State Ionics 53–56:628CrossRefGoogle Scholar
  18. 18.
    McGrawa JM, Bahna CS, Parilla PA, Perkinsa JD, Readeyb DW, Ginleya DS (1999) Electrochim Acta 45:187CrossRefGoogle Scholar
  19. 19.
    Julien C, Haro-Poniatowski E, Camacho-Lopez MA, Escobar-Alarcon L, Jimenez-Jarquin J (2000) Mater Sci Eng B 72:36CrossRefGoogle Scholar
  20. 20.
    Sauvage F, Baudrin E, Morcrette M, Tarascon JM (2004) Electrochem Solid State Lett 7:A15CrossRefGoogle Scholar
  21. 21.
    Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Electrochem Commun 5:111CrossRefGoogle Scholar
  22. 22.
    Sakuda A, Hayashi A, Hama S, Tatsumisago M (2010) J Am Ceram Soc 93:765CrossRefGoogle Scholar
  23. 23.
    Takada K, Aotani N, Iwamoto K, Kondo S (1996) Solid State Ionics 86:877CrossRefGoogle Scholar
  24. 24.
    Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A796CrossRefGoogle Scholar
  25. 25.
    Ji X, Nazar LF (2010) J Mater Chem 20:9821CrossRefGoogle Scholar
  26. 26.
    Sakuda A, Kitaura H, Hayashi A, Tatsumisago M, Hosoda Y, Nagakane T, Sakamoto A (2012) Chem Lett 41:260CrossRefGoogle Scholar
  27. 27.
    Reshak AH, Kityk IV, Auluck S (2008) J Chem Phys 129:074706CrossRefGoogle Scholar
  28. 28.
    Reshak AH (2009) J Phys Chem A 113:1635CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Takuya Matsuyama
    • 1
  • Atsushi Sakuda
    • 1
  • Akitoshi Hayashi
    • 1
  • Yoshihiko Togawa
    • 2
  • Shigeo Mori
    • 3
  • Masahiro Tatsumisago
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan
  2. 2.Nanoscience and Nanotechnology Research CenterOsaka Prefecture UniversityOsakaJapan
  3. 3.Department of Materials Science, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations