Skip to main content
Log in

Nanoscale investigation on large crystallites in TiO2 nanotube arrays and implications for high-quality hybrid photodiodes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anodized TiO2 nanotube arrays fabricated on a TiO2 thin film on conducting glass substrates can be readily implemented in diverse applications like hybrid solar cells. In this study, we concentrate on morphologies with inner tube diameter being around 30 nm which is in dimension of the exciton diffusion length of common organic hole conductors. Cross-sectional preparation of the intact tube array in correlation with transmission electron microscopy has been performed to get local information on the TiO2 nanotubes and their arrangements, depending on anodization voltage. Crystallites have been found to be anatase and in size of several hundred nanometers along tube walls with increasing length for increasing anodization voltages. Inter-tube connections with similar crystal orientations of adjacent tubes are found. These give rise to large areas of uniform orientation. Thus, the number of grain boundaries within the film is low compared to the reported values for different TiO2-polymer material systems. Using the arrays, hybrid TiO2 solar cells were fabricated, which show high fill factors indicating good electron transport. The results suggest high electron mobility and are encouraging for a utilization of the nanotube arrays in next generation photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen X, Mao SS (2007) Chem Rev (Washington, DC) 107(7):2891. doi:10.1021/cr0500535

    CAS  Google Scholar 

  2. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol C 90(14):2011

    Article  CAS  Google Scholar 

  3. Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50(13):2904. doi:10.1002/anie.201001374

    Article  CAS  Google Scholar 

  4. Grimes CA (2007) J Mater Chem 17(15):1451. doi:10.1039/b701168g

    Article  CAS  Google Scholar 

  5. Yu B-Y, Tsai A, Tsai S-P, Wong K-T, Yang Y, Chu C-W, Shyue J-J (2008) Nanotechnology 19(25):255202. doi:10.1088/0957-4484/19/25/255202

    Article  Google Scholar 

  6. Weickert J, Dunbar RB, Hesse HC, Wiedemann W, Schmidt-Mende L (2011) Adv Mater (Weinheim, Germany) 23(16):1810. doi:10.1002/adma.201003991

    Article  CAS  Google Scholar 

  7. Mor GK, Basham J, Paulose M, Kim S, Varghese OK, Vaish A, Yoriya S, Grimes CA (2010) Nano Lett 10(7):2387. doi:10.1021/nl100415q

    Article  CAS  Google Scholar 

  8. Varghese OK, Paulose M, Grimes CA (2009) Nat Nano 4(9):592. doi:10.1038/nnano.2009.226

    Article  CAS  Google Scholar 

  9. Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizian T (2009) Electrochim Acta 54(17):4262. doi:10.1016/j.electacta.2009.02.085

    Article  CAS  Google Scholar 

  10. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) J Mater Res 19(2):628. doi:10.1557/jmr.2004.19.2.628

    Article  CAS  Google Scholar 

  11. Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2005) Thin Solid Films 496(1):42. doi:10.1016/j.tsf.2005.08.190

    Article  Google Scholar 

  12. Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) J Nanosci Nanotechnol 5(7):1158. doi:10.1166/jnn.2005.195

    Article  CAS  Google Scholar 

  13. Gong J–J, Lai Y-K, Lin C-J (2010) Electrochim Acta 55(16):4776. doi:10.1016/j.electacta.2010.03.055

    Article  CAS  Google Scholar 

  14. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) J Am Chem Soc 130(40):13364. doi:10.1021/ja804852z

    Article  CAS  Google Scholar 

  15. Hsiao P-T, Liou Y-J, Teng H (2011) J Phys Chem C 115(30):15018. doi:10.1021/jp202681c

    Article  CAS  Google Scholar 

  16. Li K-L, Xie Z-B, Adams S (2010) Z Kristallogr 225(05):173. doi:10.1524/zkri.2010.1238

    Article  CAS  Google Scholar 

  17. Weickert J, Palumbiny C, Nedelcu M, Bein T, Schmidt-Mende L (2011) Chem Mater 23(2):155. doi:10.1021/cm102389m

    Article  CAS  Google Scholar 

  18. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Adv Mater (Weinheim, Ger) 19(12):1551. doi:10.1002/adma.200601093

    Article  CAS  Google Scholar 

  19. Albu SP, Tsuchiya H, Fujimoto S, Schmuki P (2010) Eur J Inorg Chem 27:4351. doi:10.1002/ejic.201000608

    Article  Google Scholar 

  20. Yu J, Dai G, Cheng B (2010) J Phys Chem C 114(45):19378. doi:10.1021/jp106324x

    Article  CAS  Google Scholar 

  21. Jaroenworaluck A, Regonini D, Bowen CR, Stevens R (2010) Appl Surf Sci 256(9):2672. doi:10.1016/j.apsusc.2009.09.078

    Article  CAS  Google Scholar 

  22. Strecker A, Salzberger U, Mayer J (1993) Prakt Metallogr 30(10):482

    CAS  Google Scholar 

  23. Schmidt-Mende L, Zakeeruddin SM, Gratzel M (2005) Appl Phys Lett 86(1):013504. doi:10.1063/1.1844032

    Article  Google Scholar 

  24. Weickert J, Sun H, Palumbiny C, Hesse H, Schmidt-Mende L (2010) Sol Energy Mater Sol C 94(12):2371. doi:10.1016/j.solmat.2010.08.018

    Article  CAS  Google Scholar 

  25. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63(15):155409

    Article  Google Scholar 

  26. Dennler G, Scharber MC, Brabec CJ (2009) Adv Mater 21(13):1323. doi:10.1002/adma.200801283

    Article  CAS  Google Scholar 

  27. Hoppe H, Sariciftci NS (2008) Adv Polym Sci 214:1. doi:10.1007/12_2007_121

    CAS  Google Scholar 

  28. Weickert J, Auras F, Bein T, Schmidt-Mende L (2011) J Phys Chem C 115(30):15081. doi:10.1021/jp203600z

    Article  CAS  Google Scholar 

  29. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110(11):6595. doi:10.1021/cr900356p

    Article  CAS  Google Scholar 

  30. Mor G, Kim S, Paulose M, Varghese O, Shankar K, Basham J, Grimes C (2009) Nano Lett 9(12):4250

    Article  CAS  Google Scholar 

  31. Abrusci A, Ding IK, Al-Hashimi M, Segal-Peretz T, McGehee MD, Heeney M, Frey GL, Snaith HJ (2011) Energy Environ Sci 4:3051

    Article  CAS  Google Scholar 

  32. Kim MS, Kim BG, Kim J (2009) ACS Appl Mater Interfaces 1(6):1264. doi:10.1021/Am900155y

    Article  CAS  Google Scholar 

  33. Mihailetchi VD, Wildeman J, Blom PWM (2005) Phys Rev Lett 94(12):126602. doi:10.1103/Physrevlett.94.126602

    Article  CAS  Google Scholar 

  34. Coakley KM, McGehee MD (2003) Appl Phys Lett 83(16):3380

    Article  CAS  Google Scholar 

  35. Zhu R, Jiang CY, Liu B, Ramakrishna S (2009) Adv Mater 21(9):994

    Article  CAS  Google Scholar 

  36. Boucle J, Chyla S, Shaffer MSP, Durrant JR, Bradley DDC, Nelson J (2008) Adv Funct Mater 18(4):622. doi:10.1002/adfm.200700280

    Article  CAS  Google Scholar 

  37. Günes S, Marjanovic N, Nedeljkovic JM, Sariciftci NS (2008) Nanotechnology 19:424009

    Article  Google Scholar 

  38. Guldin S, Hüttner S, Tiwana P, Orilall MC, Ülgüt B, Stefik M, Docampo P, Kolle M, Divitini G, Ducati C (2010) Energy Environ Sci 4:225

    Article  Google Scholar 

  39. Street RA, Schoendorf M (2010) Phys Rev B 81(20):205307. doi:10.1103/Physrevb.81.205307

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Markus Döblinger and Steffen Schmidt for technical support on the TEMs. The authors acknowledge the support provided by the German Excellence Initiative of the Deutsche Forschungsgemeinschaft (DFG) via the “Nano-systems Initiative Munich (NIM)”; the DFG in the program “SPP1355: Elementary processes of organic photovoltaics,” as well as the project “Identification and overcoming of loss mechanisms in nanostructured hybrid solar cells - pathways toward more efficient devices”; and the Center for NanoScience (CeNS) Munich for their support through the International Doctorate Program NanoBioTechnology (IDK-NBT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wisnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisnet, A., Thomann, M., Weickert, J. et al. Nanoscale investigation on large crystallites in TiO2 nanotube arrays and implications for high-quality hybrid photodiodes. J Mater Sci 47, 6459–6466 (2012). https://doi.org/10.1007/s10853-012-6580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6580-2

Keywords

Navigation