Skip to main content
Log in

Key factors influencing the optical detection of biomolecules by their evaporative assembly on diatom frustules

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diatoms have silica frustules with transparent and delicate micro/nano scale structures, multilevel pore arrays, and large specific surface areas. We explored the potential of diatom frustules as biomolecule support for use in optical detection, for example, in protein or DNA biochips and “lab-on-a-chip” sensors. After the solution was evaporated, most particles in the solution assembled on the frustules. Experiments indicated that this phenomenon occurs because of the large specific surface of the frustules; consequently, we studied the capacity of frustules to increase the density of antibodies. The frustules of diatoms Coscinodiscus sp., Navicula sp., and Nitzschia palea were used in this study. The colored particles for optical detection included standard protein, soybean lecithin, bovine serum albumin, and human immunoglobulin G labeled with fluorescein and carbonic black ink. The results showed that the fluorescein isothiocyanate protein was densely assembled on the frustules and exhibited a fluorescence signal that is 2.5 times stronger than that of glass. Compared with the traditional glass substrate, the frustules significantly improved the antibody density and detection signals. The evaporating assembly method was used for measuring the load capacity of frustules for different antibodies; this method can be used to quantitatively bind two or more antibodies to the frustule, which may be valuable in lab-on-a-chip sensors. The design scheme of high-throughput diatom-based biochips was discussed. Through analysis, we hypothesized that diatom frustules with a large specific surface area, high transparency and pore permeability, small sizes and heights, and flat surfaces are particularly suitable for optical detection of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  2. Bozarth A, Maier U-G, Zauner S (2009) Appl Microbiol Biotechnol 82(2):195

    Article  CAS  Google Scholar 

  3. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Nature 421(6925):841

    Article  CAS  Google Scholar 

  4. Losic D, Short K, Mitchell JG, Lal R, Voelcker NH (2007) Langmuir 23(9):5014

    Article  CAS  Google Scholar 

  5. Losic D, Rosengarten G, Mitchell JG, Voelcker NH (2006) J Nanosci Nanotechnol 6(4):982

    Article  CAS  Google Scholar 

  6. De Stefano L, Rendina I, De Stefano M, Bismuto A, Maddalena P (2005) Appl Phys Lett 87(23):233902

    Article  Google Scholar 

  7. Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy Iii HW, Summers CJ, Liu M, Sandhage KH (2007) Nature 446(7132):172

    Article  CAS  Google Scholar 

  8. De Stefano L, Rea I, Rendina I, De Stefano M, Moretti L (2007) Opt Express 15(26):18082

    Article  Google Scholar 

  9. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) Trends Biotechnol 27(2):116

    Article  CAS  Google Scholar 

  10. Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) Energy Environ Sci 4(10):3930

    Article  CAS  Google Scholar 

  11. Losic D, Yu Y, Aw MS, Simovic S, Thierry B, Addai-Mensah J (2010) Chem Commun 46(34):6323

    Article  CAS  Google Scholar 

  12. Nassif N, Livage J (2011) Chem Soc Rev 40(2):849

    Article  CAS  Google Scholar 

  13. Jafar Ezzati Nazhad D, Miguel DLG (2011) TrAC Trends Anal Chem (Regular ed) 30(9):1538

    Article  Google Scholar 

  14. Losic D, Mitchell JG, Voelcker NH (2009) Adv Mater 21(29):2947

    Article  CAS  Google Scholar 

  15. Yang W, Lopez PJ, Rosengarten G (2011) Analyst 136(1):42

    Article  CAS  Google Scholar 

  16. Zhang D, Pan J, Cai J, Wang Y, Jiang Y, Jiang X (2012) J Micromech Microeng 22(3):035021

    Article  Google Scholar 

  17. Pan J, Cai J, Zhang D, Wang Y, Jiang Y (2012) Physica E. doi:10.1016/j.physe.2012.1003.1032

  18. De Stefano L, Rotiroti L, De Stefano M, Lamberti A, Lettieri S, Setaro A, Maddalena P (2009) Biosens Bioelectron 24(6):1580

    Article  Google Scholar 

  19. Gale DK, Gutu T, Jiao J, Chang C-H, Rorrer GL (2009) Adv Funct Mater 19(6):926

    Article  CAS  Google Scholar 

  20. De Stefano L, Larnberti A, Rotiroti L, De Stefano M (2008) Acta Biomater 4(1):126

    Article  Google Scholar 

  21. Townley HE, Parker AR, White-Cooper H (2008) Adv Funct Mater 18(null):369

    Article  CAS  Google Scholar 

  22. Yu Y, Addai-Mensah J, Losic D (2012) Sci Technol Adv Mater 13(1)

  23. Lin K-C, Kunduru V, Bothara M, Rege K, Prasad S, Ramakrishna BL (2010) Biosens Bioelectron 25(10):2336

    Article  CAS  Google Scholar 

  24. Umemura K, Noguchi Y, Ichinose T, Hirose Y, Kuroda R, Mayama S (2008) J Biol Phys 34(1–2):189

    Article  Google Scholar 

  25. Wang W, Gutu T, Gale DK, Jiao J, Rorrer GL, Chang C-H (2009) J Am Chem Soc 131(12):4178

    Article  CAS  Google Scholar 

  26. Wang Y, Pan J, Cai J, Li A, Chen M, Zhang D (2011) Chem Lett 40(12):1354

    Article  CAS  Google Scholar 

  27. Zhang DY, Wang Y, Pan JF, Cai J (2010) J Mater Sci 45(21):5736. doi:10.1007/s10853-010-4642-x

    Article  CAS  Google Scholar 

  28. Wang Y, Pan J, Cai J, Zhang D (2012) Biochem Biophys Res Commun 420(1):1

    Article  CAS  Google Scholar 

  29. Matovic B, Saponjic A, Devecerski A, Miljkovic M (2007) J Mater Sci 42(14):5448. doi:10.1007/s10853-006-0780-6

    Article  CAS  Google Scholar 

  30. Zhang DY, Wang Y, Zhang WQ, Pan JF, Cai J (2011) J Mater Sci 46(17):5665. doi:10.1007/s10853-011-5517-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (No. 50805005, 51075020), the 863 Project of China (No. 2009AA043804), the National Special Fund of Outstanding Doctoral Dissertation of China (No. 2007B32), and the Doctoral Candidate Academic Newcomer Award of Beihang University.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyuan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2012_6554_MOESM1_ESM.doc

Supplementary material includes the experimental details of evaporating assembly (observation of protein assembly, control experiment using living cells of diatom Coscinodiscus sp., and control experiment using carbonyl iron coated diatomite), images of diatom substrates used in experiments, scanning data of the partially arrayed diatom substrate, and SEM images of Nitzschia frustules. This material is available free of charge via Internet. (DOC 14796 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, D., Pan, J. et al. Key factors influencing the optical detection of biomolecules by their evaporative assembly on diatom frustules. J Mater Sci 47, 6315–6325 (2012). https://doi.org/10.1007/s10853-012-6554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6554-4

Keywords

Navigation