Skip to main content
Log in

Silicide formation in contacts to Si nanowires

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicides, intermetallic compounds formed by the reaction of a metal and Si, have long been used as contacts for metal oxide semiconductor (CMOS) transistors and have more become interesting for other Si nanowire (SiNW) devices. In the following, experimental results for the Ti, V, Pt, Pd, Fe, and Ni–Si systems are reported and placed in the context of prior work on silicide formation from metal films on Si wafers. For the early transition metals Ti and V, the silicide is formed only underneath the contact pad and is Si-rich (MSi2). For the middle transition metal Fe and late transition metals Pt and Pd, a metal-rich silicide was the first phase observed to form, but poor morphologies were common, making it a challenge to incorporate these contacts into nanowire devices. Nickel contacts were the only ones with well-behaved axial silicide growth away from the contact pad, and silicide formation was strongly dependent on the original SiNW orientation. These findings are discussed in terms of kinetic features of the metal-SiNW systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) Nano Lett 3:149

    Article  CAS  Google Scholar 

  2. Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) Nature 425:274

    Article  CAS  Google Scholar 

  3. Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1289

    Article  CAS  Google Scholar 

  4. Clevenger LA, Harper JME, Cabral C Jr, Nobili C, Ottaviani G, Mann R (1992) J Appl Phys 72(10):4978

    Article  CAS  Google Scholar 

  5. Harper JME, Cabral C Jr, Lavoie C (2000) Annu Rev Mater Sci 2000:523

    Article  Google Scholar 

  6. d’Heurle FM, Gas P, Philibert J (1995) Solid State Phenom 41:93

    Article  Google Scholar 

  7. Beyers R, Sinclair R (1985) J Appl Phys 57(12):5240

    Article  CAS  Google Scholar 

  8. Kato H, Nakamura Y (1976) Thin Solid Films 34:135

    Article  CAS  Google Scholar 

  9. Maa IS, Lin C, Liu H (1979) Thin Solid Films 64:439

    Article  CAS  Google Scholar 

  10. Murarka SP, Fraser DB (1980) J Appl Phys 51:342

    Article  CAS  Google Scholar 

  11. Dellas NS, Liu BZ, Eichfeld SM, Eichfeld CM, Mayer TS, Mohney SE (2009) J Appl Phys 105:094309

    Article  Google Scholar 

  12. Wang Y, Lew K-K, Ho T-T, Pan L, Novak SW, Dickey EC, Redwing JM, Mayer TS (2005) Nano Lett 5(11):2139

    Article  CAS  Google Scholar 

  13. Chu WK, Lau SS, Mayer JW, Muller H, Tu KN (1975) Thin Solid Films 25:393

    Article  CAS  Google Scholar 

  14. Krautle H, Nicolet M-A, Mayer JW (1974) J Appl Phys 45(8):3304

    Article  Google Scholar 

  15. Tu KN, Ziegler JF, Kircher CJ (1973) Appl Phys Lett 23(9):493

    Article  CAS  Google Scholar 

  16. Chu WK, Krautle H, Mayer JW, Muller H, Nicolet M-A, Tu KN (1974) Appl Phys Lett 25(8):454

    Article  CAS  Google Scholar 

  17. Bucher E, Schulz S, Lux-Steiner MC, Munz P, Gubler U, Greuter F (1986) Appl Phys A 40:71

    Article  Google Scholar 

  18. Wittmer M (1983) J Appl Phys 54(9):5081

    Article  CAS  Google Scholar 

  19. Pretorius R, Wandt MAE, McLeod JE, Botha AP, Comrie CM (1989) J Electrochem Soc 136(3):839

    Article  CAS  Google Scholar 

  20. Liu B, Wang Y, Dilts S, Mayer TS, Mohney SE (2007) Nano Lett 7(3):818

    Article  CAS  Google Scholar 

  21. Lin Y-C, Lu K-C, Wu W-W, Bai J, Chen LJ, Tu KN, Huang Y (2008) Nano Lett 8(3):913

    Article  CAS  Google Scholar 

  22. Villars P, Calvert LD, Pearson WB (1991) Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd edn. American Society for Metals, Metals Park

    Google Scholar 

  23. Foll H, Ho PS (1981) J Appl Phys 52(9):5510

    Article  Google Scholar 

  24. Scott DM, Lau SS, Pfeffer RL, Lux RA, Mikkelson J, Wielunski L, Nicolet M-A (1983) Thin Solid Films 104(1–2):227

    CAS  Google Scholar 

  25. Sarpatwari K, Dellas NS, Awadelkarim OO, Mohney SE (2010) Solid State Electron 54:689

    Article  CAS  Google Scholar 

  26. Bower RW, Sigurd D (1973) Solid State Electron 16:1461

    Article  CAS  Google Scholar 

  27. Levy D, Grob A, Grob JJ, Ponpon JP (1984) Appl Phys A 35:141

    Article  Google Scholar 

  28. Chen JF, Chen LJ (1995) Mater Chem Phys 39:229

    Article  CAS  Google Scholar 

  29. Hamaya K, Ueda K, Kishi Y, Ando Y, Sadoh T, Miyao M (2008) Phys Lett 93:132117

    Google Scholar 

  30. Ando Y, Hamaya K, Miyao M (2009) Appl Phys Lett 94:182105

    Article  Google Scholar 

  31. Kioseoglou G, Jonker BT (2009) Appl Phys Lett 94:122106

    Article  Google Scholar 

  32. Lau SS, Feng JSY, Olowolafe JO, Nicolet MA (1975) Thin Solid Films 25(2):415

    Article  CAS  Google Scholar 

  33. Cheng HC, Yew TR, Chen LJ (1985) J Appl Phys 57(12):5246

    Article  CAS  Google Scholar 

  34. Gallego JM, GarcÌa JM, Alvarez J, Miranda R (1992) Phys Rev B 46(20):13339

    Article  CAS  Google Scholar 

  35. Baldwin NR, Ivey DG (1996) J Mater Sci 31(1):31. doi:10.1007/BF00355122

    Article  CAS  Google Scholar 

  36. Miquita DR, Gonzalez JC, da Silva MIN, Rodrigues WN, Moreira MVB, Paniago R, Ribeiro-Andrade R, Magalhaes-Paniago R, Pfannes HD, de Oliveira AG (2008) J Vac Sci Technol A 26(5):1138

    Article  CAS  Google Scholar 

  37. Dimitriadis CA, Werner JH (1990) J Appl Phys 68(1):93

    Article  CAS  Google Scholar 

  38. Swart HC, Berning GLP (1994) Appl Surf Sci 78(1):77

    Article  CAS  Google Scholar 

  39. Chemelli C, D’Angelo D, Girardi G, Pizzini S (1993) Appl Surf Sci 68(2):173

    Article  CAS  Google Scholar 

  40. Kasaya M, Yamauchi S, Hirai M, Kusaka M, Iwami M, Nakamura H, Watabe H (1994) Appl Surf Sci 75(1–4):110

    Article  CAS  Google Scholar 

  41. Voronchikhin A, Gomoyunova M, Malygin D, Pronin I (2007) Tech Phys 52(12):1586

    Article  CAS  Google Scholar 

  42. Won JH, Sato K, Ishimaru M, Hirotsu Y (2007) Jpn J Appl Phys 46:732

    Article  CAS  Google Scholar 

  43. Gomoyunova M, Pronin I, Malygin D, Solov’ev S, Vyalykh D, Molodtsov S (2005) Tech Phys 50(9):1212

    Article  CAS  Google Scholar 

  44. Gomoyunova MV, Malygin DE, Pronin II, Voronchikhin AS, Vyalikh DV, Molodtsov SL (2007) Surf Sci 601(21):5069

    Article  CAS  Google Scholar 

  45. Nicolet M-A, Lau SS (1983) In: Einsprich NG, Larrabee GB (eds) VLSI electronics microstructure sciences, vol 6, Chap 6. Academic, New York, p 343

  46. Ma E, Lim BS, Nicolet M-A, Natan M (1987) Appl Phys A 44:157

    Article  Google Scholar 

  47. Tu KN, Chu WK, Mayer JW (1975) Thin Solid Films 25:403

    Article  CAS  Google Scholar 

  48. Ciccariello JC, Poize S, Gas P (1990) J Appl Phys 67(7):3315

    Article  CAS  Google Scholar 

  49. Teodorescu V, Nistor L, Bender H, Steegen A, Lauwers A, Maex K, Van Landuyt J (2001) J Appl Phys 90(1):167

    Article  CAS  Google Scholar 

  50. Gibson JM, Batstone JL, Tung RT, Unterwald FC (1988) Phys Rev Lett 60(12):1158

    Article  CAS  Google Scholar 

  51. Appenzeller J, Knoch J, Tutuc E, Reuter M, Guha S (2006) Dual-gate nanowire transistors with nickel silicide contacts. Proceedings of IEDM 2006, vol. 1

  52. Sheu JT, Yeh SP, Lien CH, Tsai ST (2006) Jpn J Appl Phys 45(4B):3686

    Article  CAS  Google Scholar 

  53. Wu Y, Xiang J, Yang C, Lu W, Lieber CM (2004) Nature 430:61

    Article  CAS  Google Scholar 

  54. Weber WM, Geelhaar L, Unger E, Cheze C, Kreupl F, Riechert H, Lugli P (2007) Phys Status Solidi B 244(11):4170

    Article  CAS  Google Scholar 

  55. Lin Y-C, Chen Y, Xu D, Huang Y (2010) Nano Lett 10(11):4721

    Article  CAS  Google Scholar 

  56. Ogata K, Sutter E, Zhu X, Hofmann S (2011) Nanotechnology 22:365305

    Article  CAS  Google Scholar 

  57. Yaish YE, Katsman A, Cohen GM, Beregovsky M (2011) J Appl Phys 109:094303

    Article  Google Scholar 

  58. Lu KC, Tu KN, Wu WW, Chen LJ, Yoo B-Y, Myung NV (2007) Appl Phys Lett 90:253111

    Article  Google Scholar 

  59. Lu K-C, Wu W-W, Wu H-W, Tanner CM, Chang JP, Chen LJ, Tu KN (2007) Nano Lett 7(8):2389

    Article  CAS  Google Scholar 

  60. Zhang Z, Hellstrom P-E, Ostling M, Zhang S-L, Lu J (2006) Appl Phys Lett 88:043104

    Article  Google Scholar 

  61. Dellas NS (2011) Silicide and germanide contacts to silicon and germanium nanowires. Dissertation, The Pennsylvania State University, University Park

  62. Dellas NS, Abraham M, Minassian S, Kendrick C, Mohney SE (2011) J Mater Res 26:2282

    Article  CAS  Google Scholar 

  63. Badriev EB, Petrushkova OS, Panteleimonov LA (1974) Vestn Moskov Univ Khim 29(3):367

    Google Scholar 

  64. Woodruff SM, Dellas NS, Liu BZ, Eichfeld CM, Mayer TS, Redwing JM, Mohney SE (2008) J Vac Sci Technol B 26(4):1592

    Article  CAS  Google Scholar 

  65. Holmberg VC, Collier KA, Korgel BA (2011) Nano Lett 11:3803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to NSF for support through ECS-0609282 and DMR-0820404 (iron silicide work). Semiconductor processing was performed at the Penn State site of the NSF NNIN under agreement no. 0335765. Finally, the authors are grateful to J. M. Redwing for the semiconductor nanowire growth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Dellas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellas, N.S., Schuh, C.J. & Mohney, S.E. Silicide formation in contacts to Si nanowires. J Mater Sci 47, 6189–6205 (2012). https://doi.org/10.1007/s10853-012-6549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6549-1

Keywords

Navigation