Skip to main content
Log in

Synthesis and characterization of Al2−x Sc x (WO4)3 ceramics for low-expansion infrared-transmitting windows

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A low thermal-expansion material was synthesized with potential application in thermal-shock-resistant infrared-transmitting windows. The material is derived from a solid solution of Al2(WO4)3, which has positive thermal expansion, and Sc2(WO4)3 with a negative thermal expansion. An optimum composition of Al0.5Sc1.5(WO4)3 was identified by synthesizing solid solutions, Al2−x Sc x (WO4)3, by a solid-state route with compositions ranging from x = 0 to 2.0. A single orthorhombic phase was obtained at all compositions. A composition corresponding to x = 1.5 had a low coefficient of thermal expansion of −0.15 × 10−6/°C in the temperature range 25–700 °C. A low temperature solution combustion process was developed for this optimum composition, resulting in a single-phase powder with a surface area of ~14 m2/g and average particle size (as determined from surface area) of 92 nm. The powder was consolidated by slip-casting, sintering, and hot-isostatic pressing into visibly translucent disks with a peak in-line transmittance of 73 % at 2300 cm−1. Significant infrared absorption in a 1-mm-thick disk of this material begins near 2200 cm−1 and features three absorptions arising from 2-phonon transitions at 2002, 1847, and 1676 cm−1. The infrared and Raman spectra are interpreted in terms of 1-, 2-, and 3-phonon vibrational transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gentilman RL (1986) Proc SPIE 683:2

    CAS  Google Scholar 

  2. Harris DC (1998) Infrared Phys Technol 39:185

    Article  CAS  Google Scholar 

  3. Harris DC (1999) Materials for infrared windows and domes. SPIE Press, Bellingham

    Book  Google Scholar 

  4. Krell A, Blank P, Ma H, Hutzler T, Van Bruggen MPB, Apetz R (2003) J Am Ceram Soc 86:12

    Article  CAS  Google Scholar 

  5. Krell A, Baur G, Dahne C (2005) Proc SPIE 5078:199

    Article  Google Scholar 

  6. Suzuki T, Omote A, Kuwata J (2004) US Patent 6,812,178

  7. Suzuki T, Omote A (2006) J Am Ceram Soc 89:691

    Article  CAS  Google Scholar 

  8. Roy R, Agrawal DK, McKinstry HH (1989) Ann Rev Mater Sci 19:59

    Article  CAS  Google Scholar 

  9. Zhang B, Guo J, Yang H, Zhu P (1989) J Mater Sci 31:5817. doi:10.1007/BF01160834

    Article  Google Scholar 

  10. Mary TA, Sleight AW (1999) J Mater Res 14:912

    Article  CAS  Google Scholar 

  11. Evans JSO, Mary TA, Sleight AW (1998) J Solid State Chem 137:148

    Article  CAS  Google Scholar 

  12. Sugimoto T, Aoki Y, Niwa E, Hashimoto T, Morito Y (2007) J Ceram Soc Jap 115:176

    Article  CAS  Google Scholar 

  13. Zhu J, Yang J, Cheng X (2012) Solid State Sci 14:187

    Article  CAS  Google Scholar 

  14. Sivasubramanian V, Ravindran TR, Kalavathi S (2006) J Electroceram 17:57

    Article  CAS  Google Scholar 

  15. Holland TJB, Redfern SAT (1997) Mineral Mag 61:65

    Article  CAS  Google Scholar 

  16. Dasgupta N, Krishnamoorthy R, Jacob KT (2001) Int J Inorg Mater 3:143

    Article  CAS  Google Scholar 

  17. Dasgupta N, Krishnamoorthy R, Jacob KT (2002) Solid State Ionics 149:227

    Article  CAS  Google Scholar 

  18. Dasgupta N, Krishnamoorthy R, Jacob KT (2002) J Mater Sci Eng B 90:278

    Article  Google Scholar 

  19. Varga T, Wilkinson AP, Jorgensen JD, Short S (2006) Solid State Sci 8:289

    Article  CAS  Google Scholar 

  20. Achary SN, Mukherjee GD, Tyagi AK, Vaidya SN (2002) J Mater Sci 37:2501. doi:10.1023/A:1015487406446

    Article  CAS  Google Scholar 

  21. Shannon RD, Prewitt CT (1969) Acta Cryst B25:925

    Google Scholar 

  22. Imanaka N, Hiraiwa M, Tamura S, Adachi G, Dabkowska H, Dabkowski A (1999) J Cryst Growth 200:169

    Article  CAS  Google Scholar 

  23. Kostogloudis GCh, Vasilakos N, Ftikos Ch (1997) J Eur Ceram Soc 17:1513

    Article  CAS  Google Scholar 

  24. Kostogloudis GCh, Vasilakos N, Ftikos Ch (1998) Solid State Ionics 106:207

    Article  CAS  Google Scholar 

  25. Sumithra S, Umarji AM (2003) Proc Indian Acad Sci (Chem Sci) 115:695

    Article  CAS  Google Scholar 

  26. Parker FJ, Rice RW (1989) J Am Ceram Soc 72:2364

    Article  CAS  Google Scholar 

  27. Rahaman MN (2007) Ceramic processing. CRC Press, Boca Raton

    Google Scholar 

  28. Nassau K, Levinstein HJ, Loiacono GM (1965) J Phys Chem Solids 26:1805

    Article  CAS  Google Scholar 

  29. Shannon RD, Fischer RX, Medenbach O, Bousquet E, Ghosez P (2009) J Solid State Chem 182:2762

    Article  CAS  Google Scholar 

  30. Vishnevskii II, Gavrish AM, Gul’ko NV, Eliseeva GG, Tal’yanskaya ND (1978) Russ J Inorg Chem 23:121

    Google Scholar 

  31. Barker AS Jr (1964) Phys Rev 135:A742–A747

    Google Scholar 

  32. Tarte P, Liegeois-Duyckaerts M (1972) Spectrochim Acta 28A:2029

    Google Scholar 

  33. Liegeois-Duyckaerts M, Tarte P (1972) Spectrochim Acta 28A:2037

    Google Scholar 

  34. Hanuza J, Macalik L (1987) Spectrochim Acta 43A:361

    CAS  Google Scholar 

  35. Evans JSO, Mary TA, Vogt T, Subramanian MA, Sleight AW (1996) Chem Mater 8:2809

    Article  CAS  Google Scholar 

  36. Zhao H, Wang J, Zhang JH, Li J, Xu G, Yu L, Gao W, Xia H, Boughton RI (2008) Chem Phys Lett 450:274

    Article  CAS  Google Scholar 

  37. Fuks H, Kaczmarek SM, Leniec G, Macalik L, Macalik B, Hanuza J (2010) Opt Mater 32:1560

    Article  CAS  Google Scholar 

  38. Joseph RI, Thomas ME (1987) Phys Stat Solidi B141:K163

    Article  Google Scholar 

  39. Thomas ME (2006) Optical propagation in linear media. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the contribution of Joe Doyle of Materials Research Laboratory, UCSB in running high-temperature XRD measurements at their facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, N., Sörge, E., Butler, B. et al. Synthesis and characterization of Al2−x Sc x (WO4)3 ceramics for low-expansion infrared-transmitting windows. J Mater Sci 47, 6286–6296 (2012). https://doi.org/10.1007/s10853-012-6548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6548-2

Keywords

Navigation