Skip to main content

Advertisement

Log in

Pressure-dependent electronic properties of MgO polymorphs: a first-principles study of Compton profiles and autocorrelation functions

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The first-principles periodic linear combination of atomic orbitals method within the framework of density functional theory implemented in the CRYSTAL06 code has been applied to explore effect of pressure on the Compton profiles and autocorrelation functions (AF) of MgO. Calculations are performed for the B1, B2, B3, B4, B81, and h-MgO polymorphs of MgO to compute lattice constants and bulk moduli. The isothermal enthalpy calculations predict that B4 → B81, h-MgO → B81, B3 → B2, B4 → B2, and h-MgO → B2 transitions take place at 2, 9, 37, 42, and 64 GPa, respectively. The high-pressure transitions B81 → B2 and B1 → B2 are found to occur at 340 and 410 GPa, respectively. The pressure-dependent changes are observed largely in the valence electrons Compton profiles, whereas core profiles are almost independent of the pressure in all MgO polymorphs. Increase in pressure results in broadening of the valence electrons Compton profiles. The principal maxima in the second derivative of Compton profiles shifts toward high-momentum side in all structures. Reorganization of momentum density in the B1 → B2 structural phase transition is seen in the first and second derivatives before and after the transition pressure. Features of the AFs shift toward smaller distances when pressure increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mao HK, Bell PM (1979) J Geophys Res 9:4533

    Article  Google Scholar 

  2. Duffy TS, Hemley RJ, Mao HK (1995) Phys Rev Lett 74:1371

    Article  CAS  Google Scholar 

  3. Strachan A, Cagin T, Goddard III WA (1999) Phys Rev B 60:15084

    Article  CAS  Google Scholar 

  4. Chang KJ, Cohen ML (1984) Phys Rev B 30:4774

    Article  CAS  Google Scholar 

  5. Causa M, Dovesi R, Pisani C, Roetti C (1986) Phys Rev B 33:1308

    Article  CAS  Google Scholar 

  6. Habas MP, Dovesi R, Lichanot A (1998) J Phys Condens Matter 10:6897

    Article  CAS  Google Scholar 

  7. Jaffe JE, Snyder JA, Lin Z, Hess AC (2000) Phys Rev B 62:1660

    Article  CAS  Google Scholar 

  8. Limpijumnong S, Lambrecht WRL (2001) Phys Rev B 63:104103

    Article  Google Scholar 

  9. Baltache H, Khenata R, Sahnoun M, Driz M, Abbar B, Bouhafs B (2004) Phys B 344:334

    Article  CAS  Google Scholar 

  10. Alfè D, Alfredsson M, Brodholt J, Gillan MJ, Towler MD, Needs RJ (2005) Phys Rev B 72:014114

    Article  Google Scholar 

  11. Schleife A, Fuchs F, Furthmuller J, Bechstedt F (2006) Phys Rev B 73:245212

    Article  Google Scholar 

  12. Duan Y, Qin L, Tang G, Shi L (2008) Eur Phys J B 66:201

    Article  CAS  Google Scholar 

  13. Belonoshko AB, Arapan S, Martonak R, Rosengren A (2010) Phys Rev B 81:54110

    Article  Google Scholar 

  14. Zwijnenburg MA, Bromley ST (2011) Phys Rev B 83:24104

    Article  Google Scholar 

  15. Aguado A, Madden PA (2005) Phys Rev Lett 94:68501

    Article  Google Scholar 

  16. Zhang L, Gong Z, Fei Y (2008) J Phys Chem Solids 69:2344

    Article  CAS  Google Scholar 

  17. Williams B (1977) Compton Scattering. McGraw-Hill, New York

    Google Scholar 

  18. Cooper MJ (1985) Rep Prog Phys 48:415

    Article  CAS  Google Scholar 

  19. Cooper MJ, Mijnarends PE, Shiotani N, Sakai N, Bansil A (2004) X-ray Compton Scattering. Oxford University Press, Oxford UK

    Book  Google Scholar 

  20. Berko S (1983) In: Brandt W, Dupasquier A (eds) Positron Solid State Physics. North-Holland, Amesterdam

  21. Singru RM (1990) In: Sharma BK, Jain PC, Singru RM (eds) Proceedings of the National conference on Positron Annihilation and Compton Scattering. Omega Scientific Publishers, New Delhi

  22. Manuel A (1993) In: Proceedings of NATO Advanced Research Workshop on Advances of Positron spectroscopy of solids and surfaces. Varena, Italy, p 155

  23. West RN (1995) In: Dupasquier A, Mills AP Jr (eds) Positron Spectroscopy of Solids. IOS Press, Amesterdam

    Google Scholar 

  24. Sakai N (1992) Mater Sci Forum 431:105

    Google Scholar 

  25. Sakai N (1996) J Appl Crystallogr 29:81

    Article  CAS  Google Scholar 

  26. Cooper MJ, Lawson PK, Dixon MAG, Zukowski E, Timms DN, Itou F, Sakurai H, Kawata H, Tanaka Y, Itou M (1996) Phys Rev B 54:4068

    Article  CAS  Google Scholar 

  27. Sharma BK et al (2005) Phys Rev B 72:132405

    Article  Google Scholar 

  28. Oomi G, Honda F, Kagayama T, Itoh F, Sakurai H, Kawata H, Shimomura O (1998) J Synchron Rad 5:932

    Article  CAS  Google Scholar 

  29. Hämäläinen K, Huotari S, Laukkanen J, Soininen A, Manninen S, Kao C–C, Buslaps T, Mezouar M (2000) Phys Rev B 62:R735

    Article  Google Scholar 

  30. Tse JS, Klug DD, Jiang DT, Sternemann C, Volmer M, Huotari S, Hiraoka N, Honkimäki V, Hämäläinen K (2005) Appl Phys Lett 87:191905

    Article  Google Scholar 

  31. Sabouri-Dodaran AA, Bellin Ch, Loupias G, Marangolo M, Rabii S, Rachdi F, Buslaps T, Mezouar M (2005) Phys Rev B 72:85412

    Article  Google Scholar 

  32. Aikala O, Paakkari T, Manninen S (1982) Acta Crystallogr A 38:155

    Article  Google Scholar 

  33. Podloucky R, Redinger J (1984) J Phys C: Solid State Phys 16:6955

    Article  Google Scholar 

  34. Causa M, Dovesi R, Pisani C, Roetti C (1986) Phys Rev B 34:2939

    Article  CAS  Google Scholar 

  35. Fluteaux C, Gillet JM, Becker P (2000) J Phys Chem Solids 61:369

    Article  CAS  Google Scholar 

  36. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco Ph, Llunell M (2006) CRYSTAL06 User’s Manual. University of Torino, Torino

    Google Scholar 

  37. Pisani C, Dovesi R, Roetti C (1988) Hartree–Fock ab initio treatment of crystalline solids, Lecture Notes in Chemistry, Vol. 80, Springer, Heidelberg

  38. Dovesi R, Civalleri B, Orlando R, Roetti C, Saunders VR (2005) Rev Comp Chem 21:1

    Article  CAS  Google Scholar 

  39. Evarestov RA (2007) Quantum Chemistry of Solids: The LCAO First principles treatment of crystals, Springer Series in Solid State Science, vol 153. Springer, Heidelberg

    Google Scholar 

  40. McCarthy MI, Harrison NM (1994) Phys Rev B 49:8574

    Article  Google Scholar 

  41. Harrison NM, Saunders VR (1992) J Phys Condens Matter 4:3873

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396(E)

    Article  Google Scholar 

  44. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  45. Paliwal U, Joshi KB (2011) Phys B 406:3060

    Article  CAS  Google Scholar 

  46. Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244

    Article  CAS  Google Scholar 

  47. Saenz A, Asthalter T, Weyrich W (1997) Int J Quant Chem 65:213

    Article  CAS  Google Scholar 

  48. Madelung O (2005) Semiconductor data handbook. Springer, Berlin

    Google Scholar 

  49. Ohata T, Itou M, Matsumoto I, Sakurai Y, Kawata H, Shiotani N, Kaprzyk S, Mijnarends PE, Bansil A (2000) Phys Rev B 62:16528

    Article  CAS  Google Scholar 

  50. Barbiellini B, Shukla A (2002) Phys Rev B 66:235101

    Article  Google Scholar 

  51. Pattison P, Williams BG (1976) Solid State Commun 20:585

    Article  CAS  Google Scholar 

  52. Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S (2000) Phys Rev B 61:8793

    Article  CAS  Google Scholar 

  53. Oganov AR, Dorogokupets PI (2003) Phys Rev B 67:224110

    Article  Google Scholar 

Download references

Acknowledgements

UP is grateful to the Council of Scientific and Industrial Research, New Delhi, for awarding Senior Research Fellowship. Financial support provided by the UGC, New Delhi through Grant No. SR/33-37/2007 to BKS is gratefully acknowledged. BB is supported by the U.S. Department of Energy under Contract Nos. DE-FG02-07ER46352 and DE-SC0007091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, K.B., Sharma, B.K., Paliwal, U. et al. Pressure-dependent electronic properties of MgO polymorphs: a first-principles study of Compton profiles and autocorrelation functions. J Mater Sci 47, 7549–7557 (2012). https://doi.org/10.1007/s10853-012-6521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6521-0

Keywords

Navigation