Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol

Abstract

Bacterial cellulose (BC)-based membrane-like biodegradable composites were produced by immersing wet BC pellicles in polyvinyl alcohol (PVA) solution. The BC content in the BC–PVA composites can be adjusted by varying the concentration of PVA solution. Chemical cross-linking of PVA was carried out using glutaraldehyde to increase the mechanical properties of the composites as well as to make the PVA partially to highly water insoluble. Examination by scanning electron microscopy indicated that the PVA not only penetrated the BC network, but also filled the pores within the BC pellicle. Attenuated total reflectance-Fourier transform infrared spectroscopy showed that acetal linkages could be formed in the BC–PVA composites by a cross-linking reaction. Sol–gel results indicated that cross-linking reaction increasingly made PVA insoluble in water resulting in higher gel (cross-linked fraction) content in the PVA. Wide-angle X-ray diffraction results showed decreased crystallinity in cross-linked BC and PVA, as expected. It was also found that crystal size was smaller in PVA after cross-linking. The BC–PVA composites had excellent tensile properties and cross-linking increased these properties further. Thermogravimetric analysis showed higher thermal stability for BC–PVA composites compared to PVA. The cross-linked specimens, especially the highly cross-linked ones, showed even higher thermal stability. The methods developed in this study make it possible to control the PVA content in the composites as well as the cross-linking level of PVA. These composites could be good candidates for replacing traditional non-biodegradable plastics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chou TW, Frank KK (1989) Composite materials series, 3. Textile structural composites. Elsevier, New York, p 1

    Google Scholar 

  2. 2.

    Mohanty AK, Khan MA, Hinrichsen G (2000) Compos Sci Technol 60(7):1115

    Article  CAS  Google Scholar 

  3. 3.

    Stevens ES (2001) Green plastics: an introduction to the new science of biodegradable plastics. Princeton University, Princeton, p 15

    Google Scholar 

  4. 4.

    Netravali AN, Huang X, Mizuta K (2007) Adv Compos Mater 16(4):269

    Article  CAS  Google Scholar 

  5. 5.

    Netravali AN, Chabba S (2003) Mater Today 6(4):22

    Article  Google Scholar 

  6. 6.

    Kim JT, Netravali AN (2010) J Biobased Mater Bioenergy 4(4):338

    Article  CAS  Google Scholar 

  7. 7.

    Nakamura R, Goda K, Noda J, Netravali AN (2010) J Solid Mech Mater Eng 4(11):1605

    Article  Google Scholar 

  8. 8.

    Huang X, Netravali AN (2009) Compos Sci Technol 69:1009

    Article  CAS  Google Scholar 

  9. 9.

    Huang X, Netravali AN (2007) Compos Sci Technol 67:2005

    Article  CAS  Google Scholar 

  10. 10.

    Lodha P, Netravali AN (2005) Polym Compos 26(5):647

    Article  CAS  Google Scholar 

  11. 11.

    Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35(2):261. doi:10.1023/A:1004775229149

    Article  CAS  Google Scholar 

  12. 12.

    Baeckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Biomaterials 27(9):2141

    Article  CAS  Google Scholar 

  13. 13.

    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Prog Polym Sci 26(9):1561

    Article  CAS  Google Scholar 

  14. 14.

    Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44(22):3358

    Article  CAS  Google Scholar 

  15. 15.

    Fink HP, Weigel P, Purz HJ, Ganster J (2001) Prog Polym Sci 26(9):1473

    Article  CAS  Google Scholar 

  16. 16.

    Wan Y, Hong L, Jia S, Huang Y, Zhu Y, Wang Y, Jiang H (2006) Compos Sci Technol 66(11–12):1825

    Article  CAS  Google Scholar 

  17. 17.

    Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Appl Biochem Biotechnol 24–25:253

    Article  Google Scholar 

  18. 18.

    Shibazaki H, Kuga S, Onabe F, Usuda M (1993) J Appl Polym Sci 50(6):965

    Article  CAS  Google Scholar 

  19. 19.

    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Biomaterials 26(4):419

    Article  CAS  Google Scholar 

  20. 20.

    Westland JA, Stephens SR, Johnston WC Jr, Rosenkrans HJ (1993) Bacterial cellulose binding agent. United States, Weyerhaeuser Company, Tacoma, 5207826. http://www.freepatentsonline.com/5207826.html. Accessed June 2011

  21. 21.

    Wang J, Gao C, Zhang Y, Wan Y (2010) Mater Sci Eng C 30:214

    Article  Google Scholar 

  22. 22.

    Millon LE, Oates CJ, Wan WK (2009) J Biomed Mater Res B 90B(2):922

    Article  CAS  Google Scholar 

  23. 23.

    Millon LE, Wan WK (2006) J Biomed Mater Res B 79B(2):245

    Article  CAS  Google Scholar 

  24. 24.

    Mohamadi H, Boughner D, Millon LE, Wan WK (2009) Proc Inst Mech Eng H J Eng Med 223:697

    Article  Google Scholar 

  25. 25.

    Ghiciudean TG, Stoica A, Dobre T, Tooren MV (2011) UPB Sci Bull B 73(2):17

    Google Scholar 

  26. 26.

    Yang HS, Yoon JS, Kim MN (2004) Polym Degrad Stabil 84:411

    Article  CAS  Google Scholar 

  27. 27.

    Chiellini E, Corti A, Antone SD, Solaro R (2003) Prog Polym Sci 28:963

    Article  CAS  Google Scholar 

  28. 28.

    Chen L, Imam SH, Cordon SH, Greene RV (1997) J Environ Polym Degrad 5(2):111

    Article  CAS  Google Scholar 

  29. 29.

    Kim KJ, Lee SB, Han NW (1994) Korean J Chem Eng 11(1):41

    Article  CAS  Google Scholar 

  30. 30.

    Yeom CK, Lee KH (1996) J Membr Sci 109:257

    Article  CAS  Google Scholar 

  31. 31.

    Gohil JM, Bhattacharya A, Ray P (2006) J Polym Res 13:161

    Article  CAS  Google Scholar 

  32. 32.

    Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) Mater Sci Eng C 28:539

    Article  CAS  Google Scholar 

  33. 33.

    Tang C, Saquing CD, Hardiing JR, Khan SA (2010) Macromolecules 43:630

    Article  CAS  Google Scholar 

  34. 34.

    Wang Y, Hsieh Y (2010) J Appl Polym Sci 116:3249

    Article  CAS  Google Scholar 

  35. 35.

    Yang CQ, Wei W (2000) Text Res J 70(3):230

    Article  CAS  Google Scholar 

  36. 36.

    Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Cellulose 19:139

    Article  CAS  Google Scholar 

  37. 37.

    Quero F, Nogi M, Lee KY, Poel GV, Bismarck A, Mantalaris A, Yano H, Eichhorn SJ (2011) ACS Appl Mater Interfaces 3:490

    Article  CAS  Google Scholar 

  38. 38.

    Brown EE, Laborie MPG, Zhang J (2012) Cellulose 19:127

    Article  CAS  Google Scholar 

  39. 39.

    Cai Z, Kim J (2010) Cellulose 17:83

    Article  CAS  Google Scholar 

  40. 40.

    Alberto S, Giovanni T, Anna MB, Erinestina DP, Elena S, Bruni M (2001) Macromol Mater Eng 286(9):524

    Article  Google Scholar 

  41. 41.

    Brown EE, Laborie MG (2007) Biomacromolecules 8:3074

    Article  CAS  Google Scholar 

  42. 42.

    Kim JH, Moon EJ, Kim CK (2003) J Membr Sci 216:107

    Article  CAS  Google Scholar 

  43. 43.

    Young RJ, Lovell PA (2011) Introduction to polymers, 3rd edn. CRC Press, Boca Raton, p 591

    Google Scholar 

  44. 44.

    Mtshali TN, Krupa I, Luyt AS (2001) Thermalchim Acta 380:47

    Article  CAS  Google Scholar 

  45. 45.

    Kim JH, Kim JY, Lee YM, Kim KY (1992) J Appl Polym Sci 45(10):1711

    Article  CAS  Google Scholar 

  46. 46.

    Chamis CC (1974) In: Pluddemann EP (ed) Interfaces in polymer matrix composites. Academic Press, New York, pp 31–77

    Google Scholar 

  47. 47.

    Netravali AN, Henstenburg R, Phoenix SL, Schwartz P (1989) Polym Compos 10:226

    Article  CAS  Google Scholar 

  48. 48.

    Zhang L, Chen P, Huang J, Yang G, Zheng L (2003) J Appl Polym Sci 88:422

    Article  CAS  Google Scholar 

  49. 49.

    Warner SB (1995) Fiber science. Prentice Hall, Upper Saddle River, p 205

    Google Scholar 

  50. 50.

    Lodha P, Netravali AN (2005) Compos Sci Technol 65:1211

    Article  CAS  Google Scholar 

  51. 51.

    Tensile property testing of plastics—MatWeb (2011) http://www.matweb.com/reference/tensilestrength.aspx. Accessed June 2011

  52. 52.

    Schniewind AP (1989) Concise encyclopedia of wood & wood-based materials, 1st edn. Pergamon Press, Elmsford, p 271

    Google Scholar 

  53. 53.

    Peng Z, Kong LX (2007) Polym Degrad Stab 92:1061

    Article  CAS  Google Scholar 

  54. 54.

    Chabba S, Matthews GF, Netravali AN (2005) Green Chem 7:576

    Article  CAS  Google Scholar 

  55. 55.

    Rodrigues FT, Martins VCA, Plepis AMG (2010) Polimeros 20(2):92

    Article  CAS  Google Scholar 

  56. 56.

    Liu BS, Yao CH, Fang SS (2008) Macromol Biosci 8(5):432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Textile Center (NTC) and the Wallace Foundation. The authors would like to thank Profs. Dan Luo, John March, and Antje Baeumner of the Cornell University for allowing the use of their laboratory facilities. The authors also thank the Cornell Center for Materials Research (CCMR) for the use of their facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anil N. Netravali.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qiu, K., Netravali, A.N. Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol. J Mater Sci 47, 6066–6075 (2012). https://doi.org/10.1007/s10853-012-6517-9

Download citation

Keywords

  • Fracture Stress
  • Bacterial Cellulose
  • Bacterial Cellulose Production
  • Bacterial Cellulose Pellicle
  • Acetal Linkage