Advertisement

Journal of Materials Science

, Volume 47, Issue 16, pp 6066–6075 | Cite as

Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol

  • Kaiyan Qiu
  • Anil N. NetravaliEmail author
Article

Abstract

Bacterial cellulose (BC)-based membrane-like biodegradable composites were produced by immersing wet BC pellicles in polyvinyl alcohol (PVA) solution. The BC content in the BC–PVA composites can be adjusted by varying the concentration of PVA solution. Chemical cross-linking of PVA was carried out using glutaraldehyde to increase the mechanical properties of the composites as well as to make the PVA partially to highly water insoluble. Examination by scanning electron microscopy indicated that the PVA not only penetrated the BC network, but also filled the pores within the BC pellicle. Attenuated total reflectance-Fourier transform infrared spectroscopy showed that acetal linkages could be formed in the BC–PVA composites by a cross-linking reaction. Sol–gel results indicated that cross-linking reaction increasingly made PVA insoluble in water resulting in higher gel (cross-linked fraction) content in the PVA. Wide-angle X-ray diffraction results showed decreased crystallinity in cross-linked BC and PVA, as expected. It was also found that crystal size was smaller in PVA after cross-linking. The BC–PVA composites had excellent tensile properties and cross-linking increased these properties further. Thermogravimetric analysis showed higher thermal stability for BC–PVA composites compared to PVA. The cross-linked specimens, especially the highly cross-linked ones, showed even higher thermal stability. The methods developed in this study make it possible to control the PVA content in the composites as well as the cross-linking level of PVA. These composites could be good candidates for replacing traditional non-biodegradable plastics.

Keywords

Fracture Stress Bacterial Cellulose Bacterial Cellulose Production Bacterial Cellulose Pellicle Acetal Linkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partly supported by the National Textile Center (NTC) and the Wallace Foundation. The authors would like to thank Profs. Dan Luo, John March, and Antje Baeumner of the Cornell University for allowing the use of their laboratory facilities. The authors also thank the Cornell Center for Materials Research (CCMR) for the use of their facilities.

References

  1. 1.
    Chou TW, Frank KK (1989) Composite materials series, 3. Textile structural composites. Elsevier, New York, p 1Google Scholar
  2. 2.
    Mohanty AK, Khan MA, Hinrichsen G (2000) Compos Sci Technol 60(7):1115CrossRefGoogle Scholar
  3. 3.
    Stevens ES (2001) Green plastics: an introduction to the new science of biodegradable plastics. Princeton University, Princeton, p 15Google Scholar
  4. 4.
    Netravali AN, Huang X, Mizuta K (2007) Adv Compos Mater 16(4):269CrossRefGoogle Scholar
  5. 5.
    Netravali AN, Chabba S (2003) Mater Today 6(4):22CrossRefGoogle Scholar
  6. 6.
    Kim JT, Netravali AN (2010) J Biobased Mater Bioenergy 4(4):338CrossRefGoogle Scholar
  7. 7.
    Nakamura R, Goda K, Noda J, Netravali AN (2010) J Solid Mech Mater Eng 4(11):1605CrossRefGoogle Scholar
  8. 8.
    Huang X, Netravali AN (2009) Compos Sci Technol 69:1009CrossRefGoogle Scholar
  9. 9.
    Huang X, Netravali AN (2007) Compos Sci Technol 67:2005CrossRefGoogle Scholar
  10. 10.
    Lodha P, Netravali AN (2005) Polym Compos 26(5):647CrossRefGoogle Scholar
  11. 11.
    Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35(2):261. doi: 10.1023/A:1004775229149 CrossRefGoogle Scholar
  12. 12.
    Baeckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Biomaterials 27(9):2141CrossRefGoogle Scholar
  13. 13.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Prog Polym Sci 26(9):1561CrossRefGoogle Scholar
  14. 14.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44(22):3358CrossRefGoogle Scholar
  15. 15.
    Fink HP, Weigel P, Purz HJ, Ganster J (2001) Prog Polym Sci 26(9):1473CrossRefGoogle Scholar
  16. 16.
    Wan Y, Hong L, Jia S, Huang Y, Zhu Y, Wang Y, Jiang H (2006) Compos Sci Technol 66(11–12):1825CrossRefGoogle Scholar
  17. 17.
    Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Appl Biochem Biotechnol 24–25:253CrossRefGoogle Scholar
  18. 18.
    Shibazaki H, Kuga S, Onabe F, Usuda M (1993) J Appl Polym Sci 50(6):965CrossRefGoogle Scholar
  19. 19.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Biomaterials 26(4):419CrossRefGoogle Scholar
  20. 20.
    Westland JA, Stephens SR, Johnston WC Jr, Rosenkrans HJ (1993) Bacterial cellulose binding agent. United States, Weyerhaeuser Company, Tacoma, 5207826. http://www.freepatentsonline.com/5207826.html. Accessed June 2011
  21. 21.
    Wang J, Gao C, Zhang Y, Wan Y (2010) Mater Sci Eng C 30:214CrossRefGoogle Scholar
  22. 22.
    Millon LE, Oates CJ, Wan WK (2009) J Biomed Mater Res B 90B(2):922CrossRefGoogle Scholar
  23. 23.
    Millon LE, Wan WK (2006) J Biomed Mater Res B 79B(2):245CrossRefGoogle Scholar
  24. 24.
    Mohamadi H, Boughner D, Millon LE, Wan WK (2009) Proc Inst Mech Eng H J Eng Med 223:697CrossRefGoogle Scholar
  25. 25.
    Ghiciudean TG, Stoica A, Dobre T, Tooren MV (2011) UPB Sci Bull B 73(2):17Google Scholar
  26. 26.
    Yang HS, Yoon JS, Kim MN (2004) Polym Degrad Stabil 84:411CrossRefGoogle Scholar
  27. 27.
    Chiellini E, Corti A, Antone SD, Solaro R (2003) Prog Polym Sci 28:963CrossRefGoogle Scholar
  28. 28.
    Chen L, Imam SH, Cordon SH, Greene RV (1997) J Environ Polym Degrad 5(2):111CrossRefGoogle Scholar
  29. 29.
    Kim KJ, Lee SB, Han NW (1994) Korean J Chem Eng 11(1):41CrossRefGoogle Scholar
  30. 30.
    Yeom CK, Lee KH (1996) J Membr Sci 109:257CrossRefGoogle Scholar
  31. 31.
    Gohil JM, Bhattacharya A, Ray P (2006) J Polym Res 13:161CrossRefGoogle Scholar
  32. 32.
    Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) Mater Sci Eng C 28:539CrossRefGoogle Scholar
  33. 33.
    Tang C, Saquing CD, Hardiing JR, Khan SA (2010) Macromolecules 43:630CrossRefGoogle Scholar
  34. 34.
    Wang Y, Hsieh Y (2010) J Appl Polym Sci 116:3249CrossRefGoogle Scholar
  35. 35.
    Yang CQ, Wei W (2000) Text Res J 70(3):230CrossRefGoogle Scholar
  36. 36.
    Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Cellulose 19:139CrossRefGoogle Scholar
  37. 37.
    Quero F, Nogi M, Lee KY, Poel GV, Bismarck A, Mantalaris A, Yano H, Eichhorn SJ (2011) ACS Appl Mater Interfaces 3:490CrossRefGoogle Scholar
  38. 38.
    Brown EE, Laborie MPG, Zhang J (2012) Cellulose 19:127CrossRefGoogle Scholar
  39. 39.
    Cai Z, Kim J (2010) Cellulose 17:83CrossRefGoogle Scholar
  40. 40.
    Alberto S, Giovanni T, Anna MB, Erinestina DP, Elena S, Bruni M (2001) Macromol Mater Eng 286(9):524CrossRefGoogle Scholar
  41. 41.
    Brown EE, Laborie MG (2007) Biomacromolecules 8:3074CrossRefGoogle Scholar
  42. 42.
    Kim JH, Moon EJ, Kim CK (2003) J Membr Sci 216:107CrossRefGoogle Scholar
  43. 43.
    Young RJ, Lovell PA (2011) Introduction to polymers, 3rd edn. CRC Press, Boca Raton, p 591Google Scholar
  44. 44.
    Mtshali TN, Krupa I, Luyt AS (2001) Thermalchim Acta 380:47CrossRefGoogle Scholar
  45. 45.
    Kim JH, Kim JY, Lee YM, Kim KY (1992) J Appl Polym Sci 45(10):1711CrossRefGoogle Scholar
  46. 46.
    Chamis CC (1974) In: Pluddemann EP (ed) Interfaces in polymer matrix composites. Academic Press, New York, pp 31–77Google Scholar
  47. 47.
    Netravali AN, Henstenburg R, Phoenix SL, Schwartz P (1989) Polym Compos 10:226CrossRefGoogle Scholar
  48. 48.
    Zhang L, Chen P, Huang J, Yang G, Zheng L (2003) J Appl Polym Sci 88:422CrossRefGoogle Scholar
  49. 49.
    Warner SB (1995) Fiber science. Prentice Hall, Upper Saddle River, p 205Google Scholar
  50. 50.
    Lodha P, Netravali AN (2005) Compos Sci Technol 65:1211CrossRefGoogle Scholar
  51. 51.
    Tensile property testing of plastics—MatWeb (2011) http://www.matweb.com/reference/tensilestrength.aspx. Accessed June 2011
  52. 52.
    Schniewind AP (1989) Concise encyclopedia of wood & wood-based materials, 1st edn. Pergamon Press, Elmsford, p 271Google Scholar
  53. 53.
    Peng Z, Kong LX (2007) Polym Degrad Stab 92:1061CrossRefGoogle Scholar
  54. 54.
    Chabba S, Matthews GF, Netravali AN (2005) Green Chem 7:576CrossRefGoogle Scholar
  55. 55.
    Rodrigues FT, Martins VCA, Plepis AMG (2010) Polimeros 20(2):92CrossRefGoogle Scholar
  56. 56.
    Liu BS, Yao CH, Fang SS (2008) Macromol Biosci 8(5):432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Fiber Science ProgramCornell UniversityIthacaUSA

Personalised recommendations