Skip to main content
Log in

Thermal stability up to 800 °C of a Ni–4 wt% Al nanocomposite

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal stability up to 800 °C of a nanocrystalline (NC) Ni (mean grain size ~25 nm) with ~4 wt% Al dispersed in the form of ~160-nm-sized particles, which was fabricated by co-electrodeposition from a nickel sulfate bath, has been investigated using differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results showed that microstructural evolution of the composite is temperature dependent, i.e., normal grain growth of the NC Ni, ~0.6 wt% Al solution into the Ni matrix and direct reaction between Al and Ni to form Ni3Al precipitates occurred at ~290, ~325 and ~575 °C, respectively. The distribution of Al in Ni matrix with temperature is fully discussed.

Graphical Abstract

A DSC scanning up to 800 °C of a nanocrystalline Ni matrix dispersing ~4 wt% Al particles (mean size: 160 nm) shows the particles did not significantly affect the normal grain growth of NC Ni and they have been converted into Ni3Al and Al solute atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clark D, Wood D, Erb U (1997) Nanostruct Mater 9:755

    Article  CAS  Google Scholar 

  2. Thomas E, David A, Joseph R, Todd R, Steven D (2002) Metall Mater Trans A 33:539

    Article  Google Scholar 

  3. Palumbo G, Gonzalez F, Brennenstuhl AM, Erb U, Shmayda W, Lichtenberger PC (1997) Nanostruct Mater 9:737

    Article  CAS  Google Scholar 

  4. Zhang Y, Peng X, Wang F (2004) Mater Lett 58:1134

    Article  CAS  Google Scholar 

  5. Zhou Y, Peng X, Wang F (1050) Scripta Mater 50(2004):1429

    Google Scholar 

  6. Yang X, Peng X, Wang F (2007) Scripta Mater 56:891

    Article  CAS  Google Scholar 

  7. Yang X, Peng X, Wang F (2009) J Electrochem Soc 156:C167

    Article  CAS  Google Scholar 

  8. Viswanathan R, Bakker WJ (2001) J Mater Eng Perform 10:81

    Article  CAS  Google Scholar 

  9. Hibbard G, Erb U, Aust KT, Klement U, Palumbo G (2002) Mater Sci Forum 386–388:387

    Article  Google Scholar 

  10. Klement U, Erb U, El-Sherik AM, Aust KT (1995) Mater Sci Eng A 203:177

    Article  Google Scholar 

  11. Mehta SC, Smith DA, Erb U (1995) Mater Sci Eng A 204:227

    Article  Google Scholar 

  12. Talin AA, Marquis EA, Goods SH, Kelly JJ, Miller MK (2006) Acta Mater 54:1935

    Article  CAS  Google Scholar 

  13. Choi P, Al-Kassab T, Gärtner F, Kreye H, Kirchheim R (2003) Mater Sci Eng A 353:74

    Article  Google Scholar 

  14. Susan DF, Marder AR (2002) Oxid Met 57:131

    Article  CAS  Google Scholar 

  15. Susan DF, Marder AR (1000) Oxid Met 57(2002):159

    Google Scholar 

  16. Peng X (2010) Nanoscale 2:262

    Article  CAS  Google Scholar 

  17. Wang N, Wang ZR, Aust KT, Erb U (1997) Acta Mater 45:1655

    Article  CAS  Google Scholar 

  18. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  19. Bragg WH (1913) Nature 91:477

    Article  CAS  Google Scholar 

  20. Vegard L (1921) Z Phys 5:17

    Article  CAS  Google Scholar 

  21. Susan DF, Misiolek WZ, Marder AR (2001) Metall Mater Trans A 32:379

    Article  Google Scholar 

  22. Watanabe M, Horita Z, Sano T, Nemoto M (1994) Acta Metall Mater 42:3389

    Article  CAS  Google Scholar 

  23. Liang YJ, Che YC (1993) Handbook of inorganic thermodynamic data (in Chinese), 1st edn. Northeastern University Press, Shenyang

    Google Scholar 

Download references

Acknowledgements

The work is supported by National Basic Research Program (No. 2010CB934604) of China, Ministry of Science and Technology China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, L., Peng, X. & Wang, F. Thermal stability up to 800 °C of a Ni–4 wt% Al nanocomposite. J Mater Sci 47, 7759–7763 (2012). https://doi.org/10.1007/s10853-012-6501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6501-4

Keywords

Navigation