Skip to main content

Advertisement

Log in

In situ synchrotron X-ray radiation analysis of hydrogen behavior in stainless steel subjected to continuous heating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogen generally causes lattice distortions and phase transformations when introduced into a metallic crystal lattice. For the investigations reported in this contribution, hydrogen thermal desorption analysis has been carried out to observe the influence of hydrogen desorption on the lattice of super martensitic stainless steel during continuous heating. The lattice expansion parameter and the phase transformations have been monitored during the thermal desorption process, and the influence of hydrogen on such characteristics has been evaluated. It was found that hydrogen has a significant influence on both the lattice parameter and on the thermal expansion. However, hydrogen has no influence on phase transformation during thermal desorption. The hydrogen’s desorption behavior in this process was also observed and it turned out that hydrogen desorbs in two stages, i.e., firstly diffusible hydrogen and trapped hydrogen afterward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davis JR (1999) Stainless steels. ASM international, Ohio

    Google Scholar 

  2. Herlach D (2000) Physica B 289–290:443–446

    Article  Google Scholar 

  3. Lewis F (1990) Pure Appl Chem 22:353

    Google Scholar 

  4. Birnbaum HK, Sofronis P (1994) Mater Sci Eng A 176:191–202

    Article  CAS  Google Scholar 

  5. Pressouyre G, Bernstein I (1979) Acta Metall 27:89–100

    Article  CAS  Google Scholar 

  6. Birnbaum HK, Robertson IM, Sofronis P, Teter D (1997) Mechanisms of Hydrogen related fracture—a review. In: second international conference on corrosion-deformation interactions, pp 172–195

  7. Narita N, Birnbaum HK (1980) Scr Metall 14:1355–1358

    Article  CAS  Google Scholar 

  8. Boellinghaus T, Hoffmeister H, Dangeleit A (1995) Weld World 35:83–96

    CAS  Google Scholar 

  9. Peter L, Almasi B, Verő B, Schneider H (2003) Mater Sci Eng A 339:245–254

    Article  Google Scholar 

  10. Frappart S, Oudriss A, Feaugas X, Creus J, Bouhattate J, Thébault F, Delattre L, Marchebois H (2011) Scripta Mater

  11. Dabah E, Lisitsyn V, Eliezer D (2010) Mater Sci Eng A 527:4851–4857

    Article  Google Scholar 

  12. Fg W, Hara T, Tsuzaki K (2004) Metall Mater Trans B 25B:587–597

    Google Scholar 

  13. Lee K, Lee JY (1983) J Mater Sci Lett 2:538–540

    Article  CAS  Google Scholar 

  14. Castro FJ, Meyer G (2002) J Alloy Compd 332:59–63

    Article  Google Scholar 

  15. Choo W, Lee J (1982) Metall Mater Trans A 13:135–140

    Article  Google Scholar 

  16. Enomoto M, Hirakami D, Tarui T (2006) ISIJ Int 46:1381–1387

    Article  CAS  Google Scholar 

  17. Lee J, Lee S (1986) Surf Coat Technol 28:301–314

    Article  CAS  Google Scholar 

  18. Tal-Gutelmacher E, Eliezer D, Abramov E (2007) Mater Sci Eng A 446:625–631

    Article  Google Scholar 

  19. Turnbull A, Hutchings R, Ferriss D (1997) Mater Sci Eng A 238:317–328

    Article  Google Scholar 

  20. Wilson K, Baskes M (1978) J Nucl Mater 74:179–184

    Article  CAS  Google Scholar 

  21. Boellinghaus T (2003) Hydrogen assisted cracking of supermartensitic stainless steels. In: International conference on hydrogen effects on. 1009–1018

  22. Boellinghaus T (2000) Hydrogen permeation in supermartenisitic stainless steels dependent on heat treatment and chemical composition. In: CORROSION 2000

  23. Dabah E, Kannengiesser T, Eliezer D, Boellinghaus T (2010) Mater Sci Eng A

  24. Millenbach P, Givon M, Aladjem A (1983) J Appl Electrochem 13:169–172

    Article  CAS  Google Scholar 

  25. Klaus M, Genzel C, Holzschuh H (2008) Residual stress depth profiling in complex hard coating systems by X-ray diffraction. http://linkinghub.elsevier.com/retrieve/pii/S0040609008005439

  26. Brauser S, Kannengiesser T (2010) Int J Hydrogen Energy 35:4368–4374

    Article  CAS  Google Scholar 

  27. Olden V, Thaulow C, Johnsen R (2008) Mater Des 29:1934–1948

    Article  CAS  Google Scholar 

  28. Krom AHM, Bakker A (2000) Metall Mater Trans B 31:1475–1482

    Article  Google Scholar 

  29. Oriani RA (1970) Acta Metall 18:147–157

    Article  CAS  Google Scholar 

  30. Lee S-M, Lee J-Y (1986) Metall Trans A 17:181–187

    Article  Google Scholar 

  31. Spieß L, Teichert G (2005) Moderne röntgenbeugung. Vieweg+Teubner, Mörlenbach

  32. Laine ES (1978) J Phys F 8:1343–1348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank BESSY II in Berlin Adlershof for allowing the measurement time and providing the required equipment. We also thank Prof. Christoph Genzel and his colleague Manuela Klaus for giving us the appropriate technical support that allowed us to conduct our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dabah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabah, E., Kannengiesser, T., Eliezer, D. et al. In situ synchrotron X-ray radiation analysis of hydrogen behavior in stainless steel subjected to continuous heating. J Mater Sci 47, 5879–5885 (2012). https://doi.org/10.1007/s10853-012-6489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6489-9

Keywords

Navigation