Skip to main content
Log in

Investigation on hot workability characteristics of Inconel 625 superalloy using processing maps

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hot compression tests of the commercial Inconel 625 were performed in the temperature range of 950–1200 °C and strain rate range of 0.01–10 s−1. The flow behavior and processing maps were investigated using the corrected flow stress data to eliminate effects of the friction and adiabatic heating. The processing maps have exhibited a domain in the temperature range of 1100–1200 °C and strain rate range of 0.01–10 s−1 corresponding to the higher efficiency of power dissipation. Microstructural observations reveal that the full dynamic recrystallization (DRX) occurs in this domain, which is optimum processing window for hot working to obtain a homogeneous microstructure. DRX grain growth occurs in the temperature range of 1150–1200 °C and strain rate range of 0.01–0.1 s−1. In view of the refined and uniform grains obtained by hot deformation, the finish forming processing should be selected the deformation conditions in which the full DRX occurs without the grain growth. The small regimes of flow instability are noticed at temperature below about 970 °C at the different strains. The material undergoes flow instability manifesting as bands of flow localizations and high density deformation twins. In addition, it is found that the undissolved second-phase particles and carbides can promote the DRX processing and be helpful to restrict the DRX grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) J Nucl Mater 288:222

    Article  CAS  Google Scholar 

  2. Ahmad M, Akhter JI, Shahzad M, Akhtar M (2008) J Alloys Compd 457:131

    Article  CAS  Google Scholar 

  3. Kumar A, Rajkumar KV, Jayakumar T, Raj B, Mishra B (2006) J Nucl Mater 350:284

    Article  CAS  Google Scholar 

  4. Cai DY, Xiong LY, Liu WC, Sun GD, Yao M (2007) Mater Charact 58:941

    Article  CAS  Google Scholar 

  5. Park NK, Kim IS, Na YS, Yeom JT (2001) J Mater Process Technol 111:98

    Article  CAS  Google Scholar 

  6. Aghaie-Khafri M, Golarzi N (2008) Mater Sci Eng A 486:641

    Article  Google Scholar 

  7. Medeiros SC, Prasad YVRK, Frazier WG, Srinivasan R (2000) Mater Sci Eng A 293:198

    Article  Google Scholar 

  8. Li DF, Guo QG, Guo SL, Peng HJ, Wu ZG (2011) Mater Des 32:696

    Article  CAS  Google Scholar 

  9. Guo QG, Li DF, Guo SL, Peng HJ, Hu J (2011) J Nucl Mater 414:440

    Article  CAS  Google Scholar 

  10. Srinivasan N, Prasad YVRK, Ramarao P (2008) Mater Sci Eng A 476:146

    Article  Google Scholar 

  11. Prasad YVRK (2003) J Mater Eng Perform 12:638

    Article  CAS  Google Scholar 

  12. Ziegler H (1963) Prog Solid Mech 4:63

    Google Scholar 

  13. Sui FL, Xu LX, Chen LQ, Liu XH (2011) J Mater Process Technol 211:433

    Article  CAS  Google Scholar 

  14. Wang Y, Zhen L, Shao WZ, Yang L, Zhang XM (2009) J Alloys Compd 474:341

    Article  CAS  Google Scholar 

  15. Narayana Murty VS, Nageswara Rao B (2000) Scand J Metall 29:146

    Article  Google Scholar 

  16. Guo SL, Li DF, Peng HJ, Guo QM, Hu J (2011) J Nucl Mater 410:52

    Article  CAS  Google Scholar 

  17. Srinivasa N, Prasad YVRKJ (1995) Mater Process Technol 51:171

    Article  Google Scholar 

  18. Liu Y, Hu R, Li JS, Kou HC, Li HW, Chang H, Fu HZ (2009) J Mater Process Technol 209:4020

    Article  CAS  Google Scholar 

  19. Medeiros SC, Frazier WG, Prasad YVRK (2000) Metall Mater Trans A 31:2000

    Article  Google Scholar 

  20. Monajati H, Jahazi M, Yue S, Taheri AK (2005) Metall Mater Trans A 36:895

    Article  Google Scholar 

  21. Li HZ, Wang HJ, Zeng M, Liang XP, Liu HT (2011) Compos Sci Technol 71:925

    Article  CAS  Google Scholar 

  22. Ebrahimi R, Najafizadeh A (2004) J Mater Process Technol 152:136

    Article  CAS  Google Scholar 

  23. Goetz RL, Semiatin SL (2001) J Mater Eng Perform 10:710

    Article  CAS  Google Scholar 

  24. Li L, Zhou J, Duszczyk J (2006) J Mater Process Technol 172:372

    Article  CAS  Google Scholar 

  25. Akihiko C, Sang-Hak L, Hiroaki M, Mitsuru N (2009) Mater Sci Eng A 513:286

    Article  Google Scholar 

Download references

Acknowledgements

This work was co-funded by The National Natural Science Foundation of China and Baoshan Iron & Steel Co., Ltd (No. 50834008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Li, D., Guo, Q. et al. Investigation on hot workability characteristics of Inconel 625 superalloy using processing maps. J Mater Sci 47, 5867–5878 (2012). https://doi.org/10.1007/s10853-012-6488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6488-x

Keywords

Navigation