Skip to main content
Log in

Nanocomposite films and coatings produced by interaction between graphite oxide and Congo red

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposite films and coatings were produced from the aqueous solutions containing different proportions of graphite oxide (GO) and Congo red by filtering through a polycarbonate membrane filter into alkaline media. They were examined by electron microscopy, Raman and FTIR spectroscopy, XRD, contact angle, and electrical conductivity measurements. It was established that the Congo red is able to interact through its amino groups with different functional groups of GO to form larger moieties composed of the nanoplatelets of GO. Raman spectroscopy revealed quinoid-like ring structure for dye adhering to the GO. In the case when the interaction occurs with the terminal functional groups located on the edges of the nanoplateletes of GO, larger crystallites in the nanocomposite are formed. The interaction between the Congo red and functional groups of GO situated in a basal plane leads to more compact structure of the nanocomposite. Pulsed laser treatment was used to reduce GO to graphene. Raman spectra of laser treated areas show positive effect of addition of the Congo red on the graphene yield in nanocomposite coatings after the laser treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228

    Article  CAS  Google Scholar 

  2. Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem Int Ed 50:3173

    Article  CAS  Google Scholar 

  3. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3:2547

    Article  CAS  Google Scholar 

  4. Wang H, Hu YH (2011) Ind. Eng. Chem. Res. 50:6132

    Article  CAS  Google Scholar 

  5. Datta S, Htet M, Webster DC (2011) Macromol Mater Eng 296:70

    Article  CAS  Google Scholar 

  6. Zhu YW, Murali S, Cai WW, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  CAS  Google Scholar 

  7. Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557

    Article  CAS  Google Scholar 

  8. Chen C, Yang Q, Yang Y, Lv W, Wen Y, Hou P, Wang M, Cheng H (2009) Adv Mater 21:3007

    Article  CAS  Google Scholar 

  9. Park S, Dikin DA, Nguyen ST, Ruoff RS (2009) J Phys Chem C 113:15801

    Article  CAS  Google Scholar 

  10. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N (2009) ACS Nano 3:3884

    Article  CAS  Google Scholar 

  11. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457

    Article  CAS  Google Scholar 

  12. Li FH, Bao Y, Chai J, Zhang Q, Han D, Niu L (2010) Langmuir 26:12314

    Article  CAS  Google Scholar 

  13. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48:7752

    Article  CAS  Google Scholar 

  14. Hu CG, Hu SS (2008) Langmuir 24:8890

    Article  CAS  Google Scholar 

  15. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  16. Barkauskas J, Stankevičienė I, Dakševič J, Padarauskas A (2011) Carbon 49:5373

    Article  CAS  Google Scholar 

  17. Dwari RK, Hanumantha Rao K, Somasundaran P (2009) Int J Miner Process 91:100

    Article  CAS  Google Scholar 

  18. Janczuk B, Bialopiotrowicz T, Zdziennicka A (1999) J Colloid Interface Sci 211:96

    Article  Google Scholar 

  19. Mukhopadhyay P, Gupta RK (2011) Plast Eng 67:32

    Google Scholar 

  20. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik OM, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Adv Funct Mater 19:1

    Article  Google Scholar 

  21. Shao Q, Liu G, Teweldebrhan D, Balandin AA (2008) Appl Phys Lett 92:202108

    Article  Google Scholar 

  22. Eda G, Chhowalla M (2009) Nano Lett 9:814

    Article  CAS  Google Scholar 

  23. Trushin M, Schliemann J (2007) Phys Rev Lett 99:216602

    Article  Google Scholar 

  24. Chua LL, Wang S, Chia PJ, Chen L, Zhao LH, Chen W, Wee ATS, Ho PKH (2008) J Chem Phys 129:114702

    Article  Google Scholar 

  25. Xia F, Farmer DB, Lin Y, Avouris P (2010) Nano Lett 10:715

    Article  CAS  Google Scholar 

  26. Zhan D, Ni Z, Chen W, Sun L, Luo Z, Lai L, Yu T, Thye A, Wee S, Shen Z (2011) Carbon 49:1362

    Article  CAS  Google Scholar 

  27. Bonancea CE, do Nascimento GM, de Souza ML, Temperini MLA, Corio P (2006) Appl Catal B 69:34

    Article  CAS  Google Scholar 

  28. Elhaddaoui A, Merlin JC, Delacourte A, Turrell S (1992) J Mol Struct 267:113

    Article  CAS  Google Scholar 

  29. Cooper TM, Stone MO (1998) Langmuir 14:6662

    Article  CAS  Google Scholar 

  30. Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011) Nanotechnology 22:055705

    Article  Google Scholar 

  31. Paredes JI, Villar-Rodil S, Martınez-Alonso A, Tascon JMD (2008) Langmuir 24:10560

    Article  CAS  Google Scholar 

  32. Hu C, Chen Z, Shen A, Shen X, Li J, Hu S (2006) Carbon 44:428

    Article  CAS  Google Scholar 

  33. Wang L, Wang A (2008) J Hazard Mater 160:173

    Article  CAS  Google Scholar 

  34. Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, Chichester

    Google Scholar 

  35. Cappelli E, Orlando S (2007) J Phys: Conf Series 59:616

    Article  CAS  Google Scholar 

  36. Zhou Y, Bao Q, Varghese B, Tang LAL, Tan CK, Sow CH, Loh KP (2010) Adv Mater 22:67

    Article  CAS  Google Scholar 

  37. Trusovas R, Račiukaitis G, Barkauskas J, Mažeikienė R (2011) In: Proceddings of 12th international symposium on laser precision microfabrication (LPM2011), Takamatsu, Japan, June 7–10

  38. Lee J, Shim S, Kim B, Shin HS (2011) Chem Eur J 17:2381

    CAS  Google Scholar 

  39. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Nano Lett 6:2667

    Article  CAS  Google Scholar 

  40. Lucchese MM, Stavale F, Ferreira EHM, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A (2010) Carbon 48:1592

    Article  CAS  Google Scholar 

  41. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  42. Calizo I, Bao W, Miao F, Lau CN, Balandin AA (2007) Appl Phys Lett 91:201904

    Article  Google Scholar 

  43. Calizo I, Miao F, Bao W, Lau CN, Balandin AA (2007) Appl Phys Lett 91:071913

    Article  Google Scholar 

  44. Calizo I, Bejenari I, Rahman M, Liu G, Balandin AA (2009) J Appl Phys 106:043509

    Article  Google Scholar 

  45. Parvizi F, Teweldebrhan D, Ghosh S, Calizo I, Balandin AA, Zhu H, Abbaschian R (2008) Micro Nano Lett 3:29

    Article  CAS  Google Scholar 

  46. Amini S, Garay J, Liu G, Balandin AA, Abbaschian R (2010) J Appl Phys 108:094321

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant (No. ATE-06/2010) from the Research Council of Lithuania. The authors gratefully acknowledge the Department of Bioelectrochemistry and Biospectroscopy at the Institute of Biochemistry of Vilnius University for use of the LabRam HR800 and Spectrum GX Raman spectrometers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurgis Barkauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkauskas, J., Dakševič, J., Juškėnas, R. et al. Nanocomposite films and coatings produced by interaction between graphite oxide and Congo red. J Mater Sci 47, 5852–5860 (2012). https://doi.org/10.1007/s10853-012-6485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6485-0

Keywords

Navigation