Skip to main content
Log in

Phase transformations and segregation in Fe–Ni alloys and nanoalloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ordering and segregation properties of Fe–Ni alloys and nanoalloys are investigated by means of Metropolis Monte Carlo (MMC) and molecular dynamics (MD) simulations. The model is based on an embedded atom potential which, according to thermodynamic integration, only stabilizes those phases that are observed experimentally. This stability is confirmed by MMC and the same phases are found stable in truncated octahedral nanoparticles containing no more than 201 atoms. At given composition, Ni segregates at {100} and nanoparticle surfaces on the Fe-rich side of the phase diagram, Fe segregates at intermediate compositions and no significant trend is predicted on the Ni-rich side. A BCC to L10 transition is observed to occur at a Ni fraction close to 0.32, both in bulk alloys and in nanoparticles. The transition gives rise to a change in the nanoparticle aspect ratio by a factor 21/2. Using MD, by varying temperature, it was possible to monitor a BCC to FCC transition in solid solution nanoparticles reversibly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wackerie T (2010) Magn IEEE Trans 46:326

    Article  Google Scholar 

  2. http://perform60.net/

  3. Howald RA (2003) Metal Mater Trans 34A:1759

    Article  CAS  Google Scholar 

  4. Cacciami G, De Keyzer J, Ferro R, Klotz UE, Lacaze J, Wollants P (2006) Intermetallics 14:1312

    Article  Google Scholar 

  5. Michin Y, Mehl MJ, Papaconstantopoulos DA (2005) Acta Mater 53:4029

    Article  Google Scholar 

  6. Acet M, Schneider T, Wasserman EF (1995) J Phys IV 5:C2–C105

    Google Scholar 

  7. Kadau K, Griener M, Entl P, Kreth M (2003) Phase Trans 76:355

    Article  CAS  Google Scholar 

  8. Krauss G (1999) Mater Sci Eng A273–275:40

    Google Scholar 

  9. Cayron C, Barcelo F, de Carlan Y (2010) Acta Mater 58:1395

    Article  CAS  Google Scholar 

  10. Battacharya K, Conti S, Zanzotto G, Zimmer J (2004) Nature 58:1395

    Google Scholar 

  11. Hornbogen E (1992) Phys Status Solidi 172:161

    Article  CAS  Google Scholar 

  12. Zhao X, Lianf Y, Hu Z (1996) Nanostruct Mater 7:313

    Article  CAS  Google Scholar 

  13. Lu R, Cao A, Kang F, Wang W, Wei J, Gu J, Wang K, Wu D (2007) J Phys Chem C 111:11475

    Article  Google Scholar 

  14. Zhurkin EE, Hou M (2000) J Phys Condens Matter 12:6735

    Article  CAS  Google Scholar 

  15. Bonny G, Pasianot RC, Malerba L (2009) Philos Mag 89:3451

    Article  CAS  Google Scholar 

  16. Bonny G, Pasianot RC, Malerba L (2009) Model Simul Mater Sci Eng 17:025010

    Article  Google Scholar 

  17. Mendelev MI, Han A, Srolovitz DJ, Ackland GJ, Sun DY, Asta M (2003) Philos Mag A83:3977

    Article  Google Scholar 

  18. Voter AF, Chen SP (1987) Mater Res Soc Symp Proc 82:175

    Article  CAS  Google Scholar 

  19. Howald RA (2003) Metall Mater Trans A34:1759

    Article  Google Scholar 

  20. Rossiter PL, Jago RA (1984) Materials research symposium proceedings. North-Holland, Amsterdam, p 409

    Google Scholar 

  21. Rossiter L, Lawrence PJ (1984) Philos Mag A49:535

    Google Scholar 

  22. Reuter KB, Williams DB, Goldstein JI (1989) Metall Trans 20:719

    Article  Google Scholar 

  23. Yang CW, Williams DB, Goldstein JI (1997) Geochim Cosmochim Acta 61:2943

    Article  CAS  Google Scholar 

  24. Cowley JM (1950) Phys Rev 77:669

    Article  CAS  Google Scholar 

  25. Atanasov IS, Hou M (2009) Eur Phys J D52:51

    Google Scholar 

  26. Atanasov IS, Hou M (2009) Surf Sci 603:2639

    Article  CAS  Google Scholar 

  27. Taylor A (1961) X-ray metallography. Wiley, New York, p 965

    Google Scholar 

  28. Roussel JM, Tréglia G, Legrand B (2011) Solid State Phenom 172–174:1008

    Article  Google Scholar 

  29. Hosseini AA, Jones TP (1989) Phys Status Solidi 113:57

    Article  CAS  Google Scholar 

  30. Hsiao R, Mauri D (2000) Appl Surf Sci 157:185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of us (MB) is thankful to the Université Libre de Bruxelles for a research grant. Part of the work is achieved in the context of the European FP7 project PERFORM60 (grant agreement 232612) and of the European COST action MP0903 on nanoalloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byshkin, M., Hou, M. Phase transformations and segregation in Fe–Ni alloys and nanoalloys. J Mater Sci 47, 5784–5793 (2012). https://doi.org/10.1007/s10853-012-6475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6475-2

Keywords

Navigation