Skip to main content
Log in

First-principles DFT modeling of nuclear fuel materials

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We review the state of first-principles density functional theory (DFT) modeling of nuclear fuel materials. DFT-based first-principles modeling has emerged as a quantitatively rigorous method that has been widely used to study these materials. The main challenge in DFT modeling of nuclear fuels lies in the f electron nature of actinide materials. DFT + U methods along with regular DFT methods including both non-spin-polarized and spin-polarized treatments are discussed. The review topics include bulk and intrinsic defects properties, stability of fission products, modeling of fission gas (xenon) transport, and non-equilibrium behavior of fission products in uranium dioxide and surrogate materials. In addition, DFT modeling activity in alternative fuel forms including uranium nitride, uranium carbide, and metal fuels is reviewed. Some of the limitations of empirical potential calculations addressed by DFT are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stanek CR, Grimes RW, Unal C, Maloy SA, Scott SC (2012) In: Ginley DS, Cahen D (eds) Fundamentals of materials for energy and environmental sustainability. Cambridge University Press, Cambridge, p 147

    Google Scholar 

  2. Catlow CRA (1978) Proc R Soc Lond A 364(1719):473

    Article  CAS  Google Scholar 

  3. Grimes RW, Catlow CRA (1991) Philos Trans R Soc A 335(1639):609

    Article  CAS  Google Scholar 

  4. Devanathan R, Van Brutzel L, Chartier A, Gueneau C, Mattsson AE, Tikare V, Bartel T, Besmann T, Stan M, Van Uffelen P (2010) Energy Environ Sci 3(10):1406. doi:10.1039/c0ee00028k

    Article  CAS  Google Scholar 

  5. Yun Y, Oppeneer PM (2011) MRS Bull 36(3):178. doi:10.1557/mrs.2011.34

    Article  CAS  Google Scholar 

  6. Kudin KN, Scuseria GE, Martin RL (2002) Phys Rev Lett 89(26):266402. doi:10.1103/PhysRevLett.89.266402

    Article  CAS  Google Scholar 

  7. Prodan ID, Scuseria GE, Martin RL (2006) Phys Rev B 73(4). doi:10.1103/PhysRevB.73.045104

  8. Jollet F, Jomard G, Amadon B, Crocombette JP, Torumba D (2009) Phys Rev B 80(23). doi:10.1103/PhysRevB.80.235109

  9. Petit L, Svane A, Szotek Z, Temmerman WM (2003) Science 301(5632):498

    Article  CAS  Google Scholar 

  10. Georges A, Kotliar G, Krauth W, Rozenberg MJ (1996) Rev Mod Phys 68(1):13

    Article  CAS  Google Scholar 

  11. Basak CB, Sengupta AK, Kamath HS (2003) J Alloy Compd 360(1–2):210

    Article  CAS  Google Scholar 

  12. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Phys Rev B 52(8):R5467

    Article  CAS  Google Scholar 

  13. Dudarev SL, Manh DN, Sutton AP (1997) Philos Mag B 75(5):613. doi:10.1080/13642819708202343

    Article  CAS  Google Scholar 

  14. Kotani A, Yamazaki T (1992) Progr Theor Phys Suppl 108:117

    Article  CAS  Google Scholar 

  15. Dorado B, Amadon B, Freyss M, Bertolus M (2009) Phys Rev B 79(23). doi:10.1103/PhysRevB.79.235125

  16. Crocombette JP, Jollet F, Nga LN, Petit T (2001) Phys Rev B 64(10):104107

    Article  CAS  Google Scholar 

  17. Nerikar PV, Liu XY, Uberuaga BP, Stanek CR, Phillpot SR, Sinnott SB (2009). J Phys 21(43). doi:10.1088/0953-8984/21/43/435602

  18. Geng HY, Chen Y, Kaneta Y, Iwasawa M, Ohnuma T, Kinoshita M (2008) Phys Rev B 77(10). doi:10.1103/PhysRevB.77.104120

  19. Andersson DA, Lezama J, Uberuaga BP, Deo C, Conradson SD (2009) Phys Rev B 79(2). doi:10.1103/PhysRevB.79.024110

  20. Nerikar P, Watanabe T, Tulenko J, Phillpot S, Sinnott S (2009) J Nucl Mater 384(1):61

    Article  CAS  Google Scholar 

  21. Gupta F, Brillant G, Pasturel A (2007) Philos Mag 87(16–17):2561

    Article  CAS  Google Scholar 

  22. Villars P, Calvert LD (1985) Pearson’s handbook of crystallographic data for intermetallic phases. ASM, Metals Park

    Google Scholar 

  23. Idiri M, Le Bihan T, Heathman S, Rebizant J (2004) Phys Rev B 70(1):014113

    Article  CAS  Google Scholar 

  24. Faber JJ, Lander GH (1976) Phys Rev B 14:1151

    Article  CAS  Google Scholar 

  25. Baer Y, Schoenes J (1980) Solid State Commun 33(8):885

    Article  CAS  Google Scholar 

  26. Larson P, Lambrecht WRL, Chantis A, van Schilfgaarde M (2007) Phys Rev B 75(4):045114

    Article  CAS  Google Scholar 

  27. Amadon B, Jollet F, Torrent M (2008) Phys Rev B 77(15):155104

    Article  CAS  Google Scholar 

  28. Jomard Gr, Amadon B, Bottin Fo, Torrent M (2008) Phys Rev B 78(7):075125

    Article  CAS  Google Scholar 

  29. Dorado B, Jomard G, Freyss M, Bertolus M (2010) Phys Rev B 82(3). doi:10.1103/PhysRevB.82.035114

  30. Zhou F, Ozolins V (2009) Phys Rev B 80(12):5127

    Google Scholar 

  31. Zhou F, Ozolins V (2011) Phys Rev B 83(8). doi:10.1103/PhysRevB.83.085106

  32. Geng HY, Chen Y, Kaneta Y, Kinoshita M, Wu Q (2010) Phys Rev B 82(9). doi:10.1103/PhysRevB.82.094106

  33. Meredig B, Thompson A, Hansen HA, Wolverton C, van de Walle A (2010) Phys Rev B 82(19):195128

    Article  CAS  Google Scholar 

  34. Dorado B, Freyss M, Martin G (2009) Eur Phys J B 69(2):203. doi:10.1140/epjb/e2009-00145-0

    Article  CAS  Google Scholar 

  35. Matzke H (1987) J Chem Soc Faraday Trans 2(83):1121

    Google Scholar 

  36. Freyss M, Petit T, Crocombette JP (2005) J Nucl Mater 347(1–2):44

    Article  CAS  Google Scholar 

  37. Crocombette J-P, Torumba D, Chartier A (2011) Phys Rev B 83(18). doi:10.1103/PhysRevB.83.184107

  38. Andersson DA, Uberuaga BP, Nerikar PV, Unal C, Stanek CR (2011) Phys Rev B 84(5). doi:10.1103/PhysRevB.84.054105

  39. Lidiard AB (1966) J Nucl Mater 19(1):106

    Article  CAS  Google Scholar 

  40. Matzke H (1990) J Chem Soc Faraday T 86(8):1243

    Article  CAS  Google Scholar 

  41. Gupta F, Pasturel A, Brillant G (2010) Phys Rev B 81(1). doi:10.1103/PhysRevB.81.014110

  42. Dorado B, Garcia P, Carlot G, Davoisne C, Fraczkiewicz M, Pasquet B, Freyss M, Valot C, Baldinozzi G, Simeone D, Bertolus M (2011) Phys Rev B 83(3). doi:10.1103/PhysRevB.83.035126

  43. Kim KC, Olander DR (1981) J Nucl Mater 102(1–2):192

    Article  CAS  Google Scholar 

  44. Willis BTM (1978) Acta Crystallogr A 34(JAN):88. doi:10.1107/s0567739478000157

    Article  Google Scholar 

  45. Willis BTM (1963) Nature 197(486):755. doi:10.1038/197755a0

    Article  CAS  Google Scholar 

  46. Bevan DJM, Grey IE, Willis BTM (1986) J Solid State Chem 61(1):1. doi:10.1016/0022-4596(86)90002-2

    Article  CAS  Google Scholar 

  47. Schoenes J (1980) Phys Rep 63(6):301. doi:10.1016/0370-1573(80)90158-1

    Article  Google Scholar 

  48. Conradson SD, Manara D, Wastin F, Clark DL, Lander GH, Morales LA, Rebizant J, Rondinella VV (2004) Inorg Chem 43(22):6922. doi:10.1021/ic049748z

    Article  CAS  Google Scholar 

  49. Andersson DA, Watanabe T, Deo C, Uberuaga BP (2009) Phys Rev B 80(6). doi:10.1103/PhysRevB.80.060101

  50. Chen Y, Geng HY, Kaneta Y, Kinoshita M, Iwata S (2010) Comput Mater Sci 49(4):S364. doi:10.1016/j.commatsci.2010.01.018

    Article  Google Scholar 

  51. Geng HY, Chen Y, Kaneta Y, Kinoshita M (2008) Appl Phys Lett 93(20):201903. doi:10.1063/1.3035846

    Article  CAS  Google Scholar 

  52. Geng HY, Chen Y, Kaneta Y, Kinoshita M (2008) Phys Rev B 77(18). doi:10.1103/PhysRevB.77.180101

  53. Olander DR (1985) Fundamental aspects of nuclear reactor fuel elements. Technical Information Center, Springfield

    Google Scholar 

  54. Ewart FT, Taylor RG, Horspool JM, James G (1976) J Nucl Mater 61:254

    Article  CAS  Google Scholar 

  55. Brillant G, Gupta F, Pasturel A (2011) J Nucl Mater 412(1):170. doi:10.1016/j.jnucmat.2011.02.054

    Article  CAS  Google Scholar 

  56. Liu X-Y, Sickafus KE (2011) J Nucl Mater 414(2):217. doi:10.1016/j.jnucmat.2011.03.042

    Article  CAS  Google Scholar 

  57. Grimes RW, Catlow CRA (1990) J Am Ceram Soc 73(11):3251

    Article  CAS  Google Scholar 

  58. Kleykamp H (1985) J Nucl Mater 131:221

    Article  CAS  Google Scholar 

  59. Crocombette J-P (2002) J Nucl Mater 305:29

    Article  CAS  Google Scholar 

  60. Freyss M, Vergnet N, Petit T (2006) J Nucl Mater 352(1–3):144

    Article  CAS  Google Scholar 

  61. Petit T, Freyss M, Garcia P, Martin P, Ripert M, Crocombette JP, Jollet F (2003) J Nucl Mater 320(1–2):133

    Article  CAS  Google Scholar 

  62. Petit T, Jomard G, Lemaignan C, Bigot B, Pasturel A (1999) J Nucl Mater 275:119

    Article  CAS  Google Scholar 

  63. Liu XY, Uberuaga BP, Nerikar P, Stanek CR, Sickafus KE (2010) Nucl Instrum Methods Phys Res, Sect B 268(19):3014. doi:10.1016/j.nimb.2010.05.030

    Article  CAS  Google Scholar 

  64. Gryaznov D, Heifets E, Kotomin E (2009) Phys Chem Chem Phys 11(33):7241. doi:10.1039/b907233k

    Article  CAS  Google Scholar 

  65. Brillant G, Pasturel A (2008) Phys Rev B 77(18). doi:10.1103/PhysRevB.77.184110

  66. Brillant G, Gupta F, Pasturel A (2009) J Phys 21(28). doi:10.1088/0953-8984/21/28/285602

  67. Gupta F, Pasturel A, Brillant G (2009) J Nucl Mater 385(2):368. doi:10.1016/j.jnucmat.2008.12.009

    Article  CAS  Google Scholar 

  68. Yu J, Devanathan R, Weber WJ (2009) J Phys 21(43). doi:10.1088/0953-8984/21/43/435401

  69. Gryaznov D, Rashkeev S, Kotomin EA, Heifets E, Zhukovskii Y (2010) Nucl Instrum Methods Phys Res, Sect B 268(19):3090. doi:10.1016/j.nimb.2010.05.054

    Article  CAS  Google Scholar 

  70. Thompson AE, Wolverton C (2011) Phys Rev B 84(13). doi:10.1103/PhysRevB.84.134111

  71. Xiao HY, Zhang Y, Weber WJ (2011) J Nucl Mater 414(3):464. doi:10.1016/j.jnucmat.2011.05.037

    Article  CAS  Google Scholar 

  72. Maugeri E, Wiss T, Hiernaut JP, Desai K, Thiriet C, Rondinella VV, Golle JY, Konings RJM (2009) J Nucl Mater 385(2):461

    Article  CAS  Google Scholar 

  73. Devlin D, Jarvinen G, Patterson B, Pattillo S, Valdez J, Liu XY, Phillips J (2009) J Nucl Mater 394(2–3):190

    Article  CAS  Google Scholar 

  74. Hawley ME, Devlin DJ, Reichhardt CJ, Sickafus KE, Usov IO, Valdez JA, Wang YQ (2010) Nucl Instrum Methods Phys Res, Sect B 268(19):3269

    Article  CAS  Google Scholar 

  75. Usov IO, Valdez JA, Won J, Hawley M, Devlin DJ, Dickerson RM, Uberuaga BP, Wang YQ, Reichhardt CJO, Jarvinen GD, Sickafus KE (2009) Nucl Instrum Methods Phys Res, Sect B 267(11):1918

    Article  CAS  Google Scholar 

  76. Usov IO, Won J, Valdez JA, Hawley ME, Devlin DJ, Jarvinen GD, Sickafus KE (2010) Nucl Instrum Methods Phys Res, Sect B 268(19):3044

    Article  CAS  Google Scholar 

  77. Valdez JA, Usov IO, Won J, Tang M, Dickerson RM, Jarvinen GD, Sickafus KE (2009) J Nucl Mater 393(1):126

    Article  CAS  Google Scholar 

  78. Liu X-Y, Uberuaga BP, Sickafus KE (2009) J Phys 21(4). doi:10.1088/0953-8984/21/4/045403

  79. Echigoya J (2005) J Eur Ceram Soc 25(8):1381

    Article  CAS  Google Scholar 

  80. Nerikar PV, Parfitt DC, Trujillo LAC, Andersson DA, Unal C, Sinnott SB, Grimes RW, Uberuaga BP, Stanek CR (2011) Phys Rev B 84(17):174105

    Article  CAS  Google Scholar 

  81. Forsberg K, Massih AR (1985) J Nucl Mater 135(2–3):140

    Article  CAS  Google Scholar 

  82. Miekeley W, Felix FW (1972) J Nucl Mater 42(3):297

    Article  CAS  Google Scholar 

  83. Matzke H (1980) Radiat Eff Defect Solids 53(3–4):219

    CAS  Google Scholar 

  84. Ball RGJ, Grimes RW (1990) J Chem Soc Faraday Trans 86(8):1257

    Article  CAS  Google Scholar 

  85. Ball RGJ, Grimes RW (1992) J Nucl Mater 188:216

    Article  CAS  Google Scholar 

  86. Yun Y, Kim H, Kim H, Park K (2008) J Nucl Mater 378(1):40. doi:10.1016/j.jnucmat.2008.04.013

    Article  CAS  Google Scholar 

  87. Yun Y, Oppeneer PM, Kim H, Park K (2009) Acta Mater 57(5):1655. doi:10.1016/j.actamat.2008.12.010

    Article  CAS  Google Scholar 

  88. Yun YS, Eriksson O, Oppeneer PM, Kim H, Park K (2009) J Nucl Mater 385(2):364

    Article  CAS  Google Scholar 

  89. Govers K, Lemehov SE, Verwerft M (2010) J Nucl Mater 405(3):252

    Article  CAS  Google Scholar 

  90. Fahey PM, Griffin PB, Plummer JD (1989) Rev Mod Phys 61(2):289

    Article  CAS  Google Scholar 

  91. Jiang C, Liu X-Y, Sickafus KE (2011) Phys Rev B 83(5). doi:10.1103/PhysRevB.83.052103

  92. Liu XY, Uberuaga BP, Andersson DA, Stanek CR, Sickafus KE (2011) Appl Phys Lett 98(15):151902. doi:10.1063/1.3579198

    Article  CAS  Google Scholar 

  93. Windl W, Bunea MM, Stumpf R, Dunham ST, Masquelier MP (1999) Phys Rev Lett 83(21):4345

    Article  CAS  Google Scholar 

  94. Sorensen MR, Voter AF (2000) J Chem Phys 112(21):9599

    Article  CAS  Google Scholar 

  95. Geng HY, Chen Y, Kaneta Y, Kinoshita M (2008) J Alloy Compd 457(1–2):465. doi:10.1016/j.jallcom.2007.03.030

    Article  CAS  Google Scholar 

  96. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113(22):9901

    Article  CAS  Google Scholar 

  97. Henkelman G, Jonsson H (2000) J Chem Phys 113(22):9978

    Article  CAS  Google Scholar 

  98. Parfitt DC, Grimes RW (2009) J Nucl Mater 392(1):28

    Article  CAS  Google Scholar 

  99. Freyss M (2010) Phys Rev B 81(1). doi:10.1103/PhysRevB.81.014101

  100. Ducher R, Dubourg R, Barrachin M, Pasturel A (2011) Phys Rev B 83(10). doi:10.1103/PhysRevB.83.104107

  101. Kotomin EA, Grimes RW, Mastrikov Y, Ashley NJ (2007) J Phys 19(10). doi:10.1088/0953-8984/19/10/106208

  102. Samsel-Czekala M, Talik E, Du Plessis PdV, Troc R, Misiorek H, Sulkowski C (2007) Phys Rev B 76(14). doi:10.1103/PhysRevB.76.144426

  103. Weck PF, Kim E, Balakrishnan N, Poineau F, Yeamans CB, Czerwinski KR (2007) Chem Phys Lett 443(1–3):82. doi:10.1016/j.cplett.2007.06.047

    Article  CAS  Google Scholar 

  104. Kotomin EA, Mastrikov YA (2008) J Nucl Mater 377(3):492. doi:10.1016/j.jnucmat.2008.04.015

    Article  CAS  Google Scholar 

  105. Evarestov RA, Losev MV, Panin AI, Mosyagin NS, Titov AV (2008) Phys Status Solidi B 245(1):114. doi:10.1002/pssb.200743247

    Article  CAS  Google Scholar 

  106. Evarestov RA, Panin AI, Bandura AV, Losev MV (2008) In: Dovesi RORRC (ed) Ab initio simulation of crystalline solids: history and prospects—contributions in honor of Cesare Pisani. Journal of Physics Conference Series, vol 117. pp 12015–12015. doi:10.1088/1742-6596/117/1/012015

  107. Evarestov RA, Bandura AV, Losev MV, Kotomin EA, Zhukovskii YF, Bocharov D (2008) J Comput Chem 29(13):2079. doi:10.1002/jcc.21023

    Article  CAS  Google Scholar 

  108. Kotomin EA, Mastrikov YA, Rashkeev SN, Van Uffelen P (2009) J Nucl Mater 393(2):292. doi:10.1016/j.jnucmat.2009.06.016

    Article  CAS  Google Scholar 

  109. Petit L, Svane A, Szotek Z, Temmerman WM, Stocks GM (2009) Phys Rev B 80(4). doi:10.1103/PhysRevB.80.045124

  110. Zhukovskii YF, Bocharov D, Kotomin EA (2009) J Nucl Mater 393(3):504. doi:10.1016/j.jnucmat.2009.07.010

    Article  CAS  Google Scholar 

  111. Zhukovskii YF, Bocharov D, Kotomin EA, Evarestov RA, Bandura AV (2009) Surf Sci 603(1):50. doi:10.1016/j.susc.2008.10.019

    Article  CAS  Google Scholar 

  112. Pukari M, Runevall O, Sandberg N, Wallenius J (2010) J Nucl Mater 406(3):351. doi:10.1016/j.jnucmat.2010.09.006

    Article  CAS  Google Scholar 

  113. Lu Y, Wang B-T, Li R-W, Shi H, Zhang P (2010) J Nucl Mater 406(2):218. doi:10.1016/j.jnucmat.2010.08.026

    Article  CAS  Google Scholar 

  114. Lu Y, Wang B-T, Li R-W, Shi H-L, Zhang P (2011) J Nucl Mater 410(1–3):46. doi:10.1016/j.jnucmat.2010.12.308

    Article  CAS  Google Scholar 

  115. Bocharov D, Gryaznov D, Zhukovskii YF, Kotomin EA (2011) Surf Sci 605(3–4):396. doi:10.1016/j.susc.2010.11.007

    Article  CAS  Google Scholar 

  116. Bocharov D, Gryaznov D, Zhukovskii YF, Kotomin EA (2011) J Nucl Mater 416(1–2):200. doi:10.1016/j.jnucmat.2010.11.090

    Article  CAS  Google Scholar 

  117. Huang GY, Wirth BD (2011) J Phys 23(20):205402

    Google Scholar 

  118. Xiang S, Huang H, Hsiung LM (2008) J Nucl Mater 375(1):113. doi:10.1016/j.jnucmat.2007.11.003

    Article  CAS  Google Scholar 

  119. Beeler B, Good B, Rashkeev S, Deo C, Baskes M, Okuniewski M (2010) J Phys 22(50). doi:10.1088/0953-8984/22/50/505703

  120. Landa A, Soderlind P, Turchi PEA (2011) J Nucl Mater 414(2):132

    Article  CAS  Google Scholar 

  121. Landa A, Soderlind P, Turchi PEA (2009) J Alloy Compd 478(1–2):103

    Article  CAS  Google Scholar 

  122. Landa A, Soderlind P, Turchi PEA, Vitos L, Ruban A (2009) J Nucl Mater 393(1):141

    Article  CAS  Google Scholar 

  123. Landa A, Soderlind P, Turchi PEA, Vitos L, Ruban A (2009) J Nucl Mater 385(1):68

    Article  CAS  Google Scholar 

  124. Alonso PR, Rubiolo GH (2007) Model Simul Mater Sci 15(3):263

    Article  CAS  Google Scholar 

  125. Basak CB, Sengupta AK, Kamath HS (2003) J Alloy Compd 360(1–2):210

    Article  CAS  Google Scholar 

  126. Tiwary P, van de Walle A, Jeon B, Gronbech-Jensen N (2011) Phys Rev B 83(9):094104

    Article  CAS  Google Scholar 

  127. Van Brutzel L, Rarivomanantsoa M (2006) J Nucl Mater 358(2–3):209

    Article  CAS  Google Scholar 

  128. Desai TG, Millett P, Tonks M, Wolf D (2010) Acta Mater 58(1):330

    Article  CAS  Google Scholar 

  129. Ichinomiya T, Uberuaga BP, Sickafus KE, Nishiura Y, Itakura M, Chen Y, Kaneta Y, Kinoshita M (2009) J Nucl Mater 384(3):315

    Article  CAS  Google Scholar 

  130. Chartier A, Van Brutzel L, Freyss M (2010) Phys Rev B 81(17). doi:10.1103/PhysRevB.81.174111

  131. Watanabe T, Srivilliputhur SG, Schelling PK, Tulenko JS, Sinnott SB, Phillpot SR (2009) J Am Ceram Soc 92(4):850

    Article  CAS  Google Scholar 

  132. Valone SM, Uberuaga BP, Liu XY, Jeon B, Chaudhry A, Gronbech-Jensen N (2010) Nucl Instrum Methods Phys Res, Sect B 268(19):3114. doi:10.1016/J.Nimb.2010.05.066

    Article  CAS  Google Scholar 

  133. Aidhy DS, Wolf D, El-Azab A (2011) Scripta Mater 65(10):867

    Article  CAS  Google Scholar 

  134. Henkelman G, Uberuaga BP, Harris DJ, Harding JH, Allan NL (2005) Phys Rev B 72(11):115437

    Article  CAS  Google Scholar 

  135. Shan TR, Devine BD, Kemper TW, Sinnott SB, Phillpot SR (2010) Phys Rev B 81(12):125328

    Article  CAS  Google Scholar 

  136. Valone SM (2011) J Phys Chem Lett 2(20):2618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank insightful discussions with Chris Stanek, Pankaj Nerikar, Chao Jiang, Steve Valone, and Kurt Sickafus, and the contribution of Fig. 8 by Chao Jiang. The authors gratefully acknowledge the support of the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, under the Fuels Integrated Performance and Safety Code (IPSC) project with work Package No. FTLA11MS0603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XY., Andersson, D.A. & Uberuaga, B.P. First-principles DFT modeling of nuclear fuel materials. J Mater Sci 47, 7367–7384 (2012). https://doi.org/10.1007/s10853-012-6471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6471-6

Keywords

Navigation