Advertisement

Journal of Materials Science

, Volume 47, Issue 15, pp 5760–5765 | Cite as

Patterning of carbon nanotube structures by inkjet printing of catalyst

  • Christoforos Chatzikomis
  • Sebastian W. Pattinson
  • Krzysztof K. K. KoziolEmail author
  • Ian M. Hutchings
Article

Abstract

The controlled deposition of carbon nanotubes (CNTs) has many potential applications in areas such as microfluidics and field emission arrays. The use of inkjet printing to deposit catalyst offers numerous advantages for these, particularly the ability to print arbitrary patterns at low cost. We use inkjet technology to deposit iron salts, which act as a catalyst from which CNTs are subsequently grown by chemical vapour deposition. In this study, we study the effect of the iron salt concentration on ink viscosity, as well as the printing quality using optical and electron microscopy. We find that the iron salt concentration has a significant effect on the pattern quality and, most importantly, allows for the production of controllable ring-like shapes with feature size smaller than that achievable by the print-head alone. These shapes are the result of a variation of the coffee-stain effect, and could be useful particularly in fabricating microfluidic devices. We show that iron salts are suitable CNT catalysts for deposition by inkjet printing, and that their concentration is crucial both for print quality as well as for the production of novel patterns by making use of the drying behaviour of the ink.

Keywords

Inkjet Printing Iron Salt Iron Nitrate Chemical Vapour Deposition Reactor Chemical Vapour Deposition Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

SP thanks the Engineering and Physical Sciences Research Council for the funding. KK thanks the Royal Society for their financial support.

References

  1. 1.
    Cao Q, Rogers JA (2009) Adv Mater 21(1):29. doi: 10.1002/adma.200801995 CrossRefGoogle Scholar
  2. 2.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787. doi: 10.1126/science.1060928 CrossRefGoogle Scholar
  3. 3.
    Hu L, Hecht DS, Grüner G (2010) Chem Rev 110(10):5790. doi: 10.1021/cr9002962 CrossRefGoogle Scholar
  4. 4.
    Yan Y, Chan-Park MB, Zhang Q (2007) Small 3(1):24. doi: 10.1002/smll.200600354 CrossRefGoogle Scholar
  5. 5.
    Huang S, Cai X, Liu J (2003) J Am Chem Soc 125(19):5636. doi: 10.1021/ja034475c CrossRefGoogle Scholar
  6. 6.
    Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA (1999) Appl Phys Lett 75(8):1086CrossRefGoogle Scholar
  7. 7.
    Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Science 283(5401):512. doi: 10.1126/science.283.5401.512 CrossRefGoogle Scholar
  8. 8.
    Cassell AM, Franklin NR, Tombler TW, Chan EM, Han J, Dai H (1999) J Am Chem Soc 121(34):7975. doi: 10.1021/ja992083t CrossRefGoogle Scholar
  9. 9.
    Sudipta R (2007) J Phys D Appl Phys 40(22):R413CrossRefGoogle Scholar
  10. 10.
    Ago H, Murata K, Yumura M, Yotani J, Uemura S (2003) Appl Phys Lett 82(5):811CrossRefGoogle Scholar
  11. 11.
    Ago H, Qi J, Tsukagoshi K, Murata K, Ohshima S, Aoyagi Y, Yumura M (2003) J Electroanal Chem 559:25. doi: 10.1016/s0022-0728(02)01281-0 CrossRefGoogle Scholar
  12. 12.
    Huang S, Fu Q, An L, Liu J (2004) Phys Chem Chem Phys 6(6):1077CrossRefGoogle Scholar
  13. 13.
    Mansoor M, Kinloch I, Derby B (2010) Key Eng Mater 442:7. doi: 10.4028/www.scientific.net/KEM.442.7 CrossRefGoogle Scholar
  14. 14.
    Tempel H, Joshi R, Schneider JJ (2010) Mater Chem Phys 121(1–2):178. doi: 10.1016/j.matchemphys.2010.01.029 CrossRefGoogle Scholar
  15. 15.
    Hoath SD, Hutchings IM, Martin GD, Tuladhar TR, Mackley MR, Vadillo D (2009) J Imaging Sci Technol 53(4):041208CrossRefGoogle Scholar
  16. 16.
    Feng JQ (2002) J Imaging Sci Technol 46(5):398Google Scholar
  17. 17.
    Jang D, Kim D, Moon J (2009) Langmuir 25(5):2629. doi: 10.1021/la900059m CrossRefGoogle Scholar
  18. 18.
    Hutchings IM (2009) Ink-jet printing in micro-manufacturing: opportunities and limitations. Paper presented at the 4M/ICOMM 2009—the global conference on micro manufacture, Forschungszentrum Karlsruhe, KarlsruheGoogle Scholar
  19. 19.
    Derby B (2010) Annu Rev Mater Res 40(1):395. doi: 10.1146/annurev-matsci-070909-104502 CrossRefGoogle Scholar
  20. 20.
    Pattinson SW, Prehn K, Kinloch IA, Eder D, Koziol KKK, Schulte K, Windle AH (2012) RSC Adv. doi: 10.1039/C2RA00660J
  21. 21.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389(6653):827CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christoforos Chatzikomis
    • 1
  • Sebastian W. Pattinson
    • 2
  • Krzysztof K. K. Koziol
    • 2
    Email author
  • Ian M. Hutchings
    • 1
  1. 1.Inkjet Research Centre, Institute for ManufacturingUniversity of CambridgeCambridgeUK
  2. 2.Macromolecular Materials Laboratory, Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations