Skip to main content
Log in

Thermoelectric properties of Ho-doped Bi0.88Sb0.12

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Seebeck coefficients, electrical resistivities, total thermal conductivities, and magnetization are reported for temperatures between 5 and 350 K for n-type Bi0.88Sb0.12 nano-composite alloys made by Ho-doping at the 0, 1, and 3 % atomic levels. The alloys were prepared using a dc hot-pressing method, and are shown to be single phase for both Ho contents with grain sizes on the average of 900 nm. We find the parent compound has a maximum of ZT = 0.28 at 231 K, while doping 1 % Ho increases the maximum ZT to 0.31 at 221 K and the 3 % doped sample suppresses the maximum ZT = 0.24 at a temperature of 260 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Smith GE, Wolfe R (1962) J Appl Phys 33:841

    Article  CAS  Google Scholar 

  2. Wolfe R, Smith GE (1962) Appl Phys Lett 1:5

    Article  CAS  Google Scholar 

  3. Lenoir B, Demouge A, Perrin D, Scherrer H, Scherrer S, Cassart M, Michenaud JP (1995) J Phys Chem Solids 56:99

    Article  CAS  Google Scholar 

  4. Yim WM, Amith A (1972) Solid-State Electron 15:1141

    Article  CAS  Google Scholar 

  5. Ioffe AF (1957) Semiconductor thermoelements and thermoelectric cooling. Infosearch, London

    Google Scholar 

  6. Gopinathan KK, Goldsmid HJ, Matthews DN, Taylor KNR (1988) In: Proceedings of the 7th International Conference, Thermoelectric Energy Conversion 58

  7. Dashevskii ZM, Sidorenko NA, Skipidarov SY, Tsvetkova NA, Mocolov AB (1991) In: Proceedings of the 10th International Conference, Thermoelectric Energy Conversion 142

  8. Vedernikov MV, Kuznetsov VL, Ditman AV, Meleks BT, Burkov AT (1991) In: Proceedings of the 10th International Conference, Thermoelectric Energy Conversion 96

  9. Fee MG (1993) Appl Phys Lett 62:1161

    Article  CAS  Google Scholar 

  10. Jain AL (1959) Phys Rev 114:1518

    Article  CAS  Google Scholar 

  11. Lenoir B, Cassart M, Michenaud JP, Scherrer H, Scherrer S (1996) J Phys Chem Solids 57:89

    Article  CAS  Google Scholar 

  12. Ellet MR, Horst RB, Williams LR, Cuff KF (1966) J Phys Soc Jpn 21:666

    Google Scholar 

  13. Chao PW, Chu HT, Kao YH (1974) Phys Rev B 9:4030

    Article  CAS  Google Scholar 

  14. Oelgart G, Schneider G, Kraak W, Herrmann R (1976) Phys Status Solidi (b) 74:K75

    Article  CAS  Google Scholar 

  15. Kraak W, Oelgart G, Schneider G, Herrmann R (1978) Phys Status Solidi (b) 88:105

    Article  CAS  Google Scholar 

  16. Kitagawa H, Noguchi H, Kiyabu T, Itoh M, Noda Y (2004) J Phys Chem Solids 65:1223

    Article  CAS  Google Scholar 

  17. Devaux X, Brochin F, Martin-Lopez R, Scherrer H (2002) J Phys Chem Solids 63:119

    Article  CAS  Google Scholar 

  18. Martin-Lopez R, Dauscher A, Scherrer H, Hejtmanek J, Kenzari H, Lenoir B (1999) Appl Phys A 68:597

    Article  CAS  Google Scholar 

  19. Sharp JW, Volckmann EH, Goldsmid HJ (2001) Phys Status Solidi (a) 2:257

    Article  Google Scholar 

  20. Belaya AD, Zayakin SA, Zemskov VS (1994) J Adv Mater 2:158

    Google Scholar 

  21. Ivanov GA, Kulikov VA, Naletov VL, Panarin AF, Regel AR (1973) Sov Phys Semicond 7:1134

    Google Scholar 

  22. Liu HJ, Li LF (2007) J Alloys Compd 433:279

    Article  CAS  Google Scholar 

  23. Dutta S, Shubha V, Ramesh TG, D’Sa F (2009) J Alloys Compd 467:305

    Article  CAS  Google Scholar 

  24. Schneider R, Chatterji T, Hoffmann JU, Hohlwein D (2000) Physica B 610:276

    Google Scholar 

  25. Snigirev OV, Tishin AM, Volkozub AV (1991) J Magn Magn Mater 94:342

    Article  CAS  Google Scholar 

  26. Gebhardt JR, Baer RA, Ali N (1997) J Alloys Compd 250:655

    Article  CAS  Google Scholar 

  27. Rosen M, Kalir D, Klimker H (1974) J Phys Chem Solids 35:1333

    Article  CAS  Google Scholar 

  28. Jensen J, Mackintosh AR (1992) J Magn Magn Mater 1481:104

    Google Scholar 

  29. Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) Science 320:634

    Article  CAS  Google Scholar 

  30. Ma Y, Hao Q, Poudel B, Lan YC, Yu B, Wang DZ, Chen G, Ren ZF (2008) Nano Lett 8:2580

    Article  CAS  Google Scholar 

  31. Zhu GH, Lan YC, Wang DZ, Vashaee D, Lee H, Wang XW, Joshi G, Yang J, Guilbert H, Pillitteri A, Dresselhaus MS, Chen G, Ren ZF (2009) Phys Rev Lett 102:196803

    Article  CAS  Google Scholar 

  32. Yan X, Poudel B, Ma Y, Lan Y, Joshi G, Liu WS, Wang H, Wang DZ, Chen G, Ren ZF (2010) Nano Lett 10:3373

    Article  CAS  Google Scholar 

  33. Zhitinskaya MK, Nemov SA, Ravich YI (1998) Phys Solid State 40(7):109

    Article  Google Scholar 

  34. Hattori T (1970) J Phys Soc Jpn 29(5):1224

    Article  CAS  Google Scholar 

  35. Hor YS, Cava RJ (2009) J Alloys Compd 479:368

    Article  CAS  Google Scholar 

  36. Goldsmid HJ, Lyon HB, Volckmann EH (1995) In: Proceedings of XIV International Conference on Thermoelectrics. ZT Services Inc, Aubun, AI

  37. Noguchi H, Kitagawa H, Kiyabu T, Hasezaki K, Noda Y (2007) J Phys Chem Solids 61:91

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge M. S. Dresselhaus, J. C. Lashley and P. S. Riseborough for their fruitful discussions and careful reading of the manuscript as well as G. McMahon for his assistance. This study is funded by the Air Force MURI program under contract FA9550-10-1-0533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Lukas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukas, K.C., Joshi, G., Modic, K. et al. Thermoelectric properties of Ho-doped Bi0.88Sb0.12 . J Mater Sci 47, 5729–5734 (2012). https://doi.org/10.1007/s10853-012-6463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6463-6

Keywords

Navigation