Skip to main content
Log in

Interrelationship between phase transition characteristics and piezoelectric response in lead lanthanum zirconate titanate relaxor ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dielectric and piezoelectric responses are investigated in relaxor-like lanthanum-modified lead zirconate titanate (PLZT) ceramics, for a La/Zr/Ti ratio of x/60/40 (x = 8 and 10 at.%), obtained by the conventional ceramic method. No significant differences were observed from the room temperature ferroelectric properties, for both PLZT compositions. On the other hand, from evaluation of the nonlinear dielectric response in terms of the Rayleigh’s model, a typical ‘soft’ behaviour is achieved in both materials, although the increments of the dielectric losses are slightly higher than the predicted by this model. The piezoelectric coefficient shows a remarkable increment with the applied dynamics stress, nevertheless without noticeable differences as a function of the lanthanum concentration. However, a significant difference is displayed in the weak-field direct longitudinal piezoelectric response. The dielectric properties revealed a higher diffuseness degree of the phase transition for the highest lanthanum content composition (PLZT 10/60/40). Thus, the observed difference in the piezoelectric response is discussed based on the nature of the phase transition in the studied relaxor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York

    Google Scholar 

  2. Yang J (2006) Analysis of piezoelectric devices. World Scientific Publishing, Singapore

    Book  Google Scholar 

  3. Xu Y (1991) Ferroelectric materials and their applications. Elsevier, Amsterdam

    Google Scholar 

  4. Setter N (2002) Piezoelectric materials in devices. EPFL-LC, Lausanne

    Google Scholar 

  5. Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park SE (1999) Appl Phys Lett 74:2059

    Article  CAS  Google Scholar 

  6. Noheda B, Cox DE (2006) Phase Transit 79:5

    Article  CAS  Google Scholar 

  7. Fu H, Cohen RE (2000) Nature 403:281

    Article  CAS  Google Scholar 

  8. Bellaiche L, Garcia A, Vanderbilt D (2000) Phys Rev Lett 84:5427

    Article  CAS  Google Scholar 

  9. Ye ZG, Noheda B, Dong M, Cox DE, Shirane G (2001) Phys Rev B 64:184114

    Article  Google Scholar 

  10. Ranjan R, Singh AK, Ragini, Pandey D (2005) Phys Rev B 71:092101

    Article  Google Scholar 

  11. Haumont R, Carreaud J, Gemeiner P, Dkhil B, Malibert C, Al-Barakat A, Bellaiche L, Kiat JM (2006) Phase Transit 79:123

    Article  CAS  Google Scholar 

  12. Noheda B, Cox DE, Shirane G, Park SE, Cross LE, Zhong Z (2001) Phys Rev Lett 86:3891

    Article  CAS  Google Scholar 

  13. Cao H, Li J, Viehland D, Xu G (2006) Phys Rev B 73:184110

    Article  Google Scholar 

  14. Janolin PE, Dkhil B, Davis M, Damjanovic D, Setter N (2007) Appl Phys Lett 90:152907

    Article  Google Scholar 

  15. Jimenez R, Jimenez B, Carreaud J, Kiat JM, Dkhil B, Holc J, Kosec M, Alguero M (2006) Phys Rev B 74:184106

    Article  Google Scholar 

  16. Park SE, Shrout TR (1997) J Appl Phys 82:1804

    Article  CAS  Google Scholar 

  17. Huang S, Sun L, Feng C, Chen L (2006) J Appl Phys 99:076104

    Article  Google Scholar 

  18. Ko JK, Kim DH, Kojima S (2007) Appl Phys Lett 90:112904

    Article  Google Scholar 

  19. Zhao X, Qu W, He H, Vittayakorn N, Tan X (2006) J Am Ceram Soc 89:202

    Article  CAS  Google Scholar 

  20. Smolenskii GA (1970) J Phys Soc Jpn 28:26

    Google Scholar 

  21. Cross LE (1987) Ferroelectrics 76:241

    Article  CAS  Google Scholar 

  22. Viehland D, Jang SJ, Cross LE, Wutting M (1990) J Appl Phys 68:2916

    Article  CAS  Google Scholar 

  23. Quian H, Bursill LA (1996) Int J Mod Phys B 10:2007

    Article  Google Scholar 

  24. Dai X, Xu Z, Li JF, Viehland D (1996) J Mater Res 11:618

    Article  CAS  Google Scholar 

  25. Dai X, Xu Z, Li JF, Viehland D (1996) J Mater Res 11:626

    Article  CAS  Google Scholar 

  26. Jullian C, Li JF, Viehland D (2005) J Appl Phys 95:4316

    Article  Google Scholar 

  27. Haertling GH (1987) Ferroelectrics 75:25

    Article  CAS  Google Scholar 

  28. Haertling GH (1999) J Am Ceram Soc 82:797

    Article  CAS  Google Scholar 

  29. Damjanovic D (1997) J Appl Phys 82:1788

    Article  CAS  Google Scholar 

  30. Hall DA (2001) J Mater Sci 36:4575. doi:10.1023/A:1017959111402

    Article  CAS  Google Scholar 

  31. Eitel RE, Shrout TR, Randall CA (2006) J Appl Phys 99:124110

    Article  Google Scholar 

  32. Garcia JE, Perez R, Ochoa DA, Albareda A, Lente MH, Eiras JA (2008) J Appl Phys 103:054108

    Article  Google Scholar 

  33. García-Zaldívar O, Peláiz-Barranco A, Calderón-Piñar F, Fundora-Cruz A, Guerra JDS, Hall DA, Mendoza ME (2008) J Phys Condens Matter 20:445230

    Article  Google Scholar 

  34. Garcia JE, Perez R, Albareda A (2001) J Phys D Appl Phys 34:3279

    Article  CAS  Google Scholar 

  35. Barzegar A, Damjanovic D, Setter N (2004) IEEE Trans Ultrason Ferroelectr Freq Control 51:262

    Google Scholar 

  36. Zhang QM, Zhao J, Uchino K, Zheng J (1997) J Mater Res 12:226

    Article  CAS  Google Scholar 

  37. Shur VY, Rumyantsev EL, Lomakin GG, Yakutova OV, Pelegov DV, Sternberg A, Kosec M (2005) Ferroelectrics 314:245

    Article  CAS  Google Scholar 

  38. Guerra JDS, Souza JA, Garcia D, Eiras JÁ (2008) Ferroelectrics 369:170

    Article  CAS  Google Scholar 

  39. Damjanovic D (2005) In: Bertotti G, Mayergoyz I (eds) Science of hysteresis. Elsevier, Amsterdam, p 337

    Google Scholar 

  40. Damjanovic D, Demartin M (1996) J Phys D Appl Phys 29:2057

    Article  CAS  Google Scholar 

  41. Damjanovic D (1997) Phys Rev B 55:R649

    Article  CAS  Google Scholar 

  42. Santos IA, Eiras JA (2001) J Phys Condens Matter 13:11733

    Article  CAS  Google Scholar 

  43. Mitoseriu L, Stancu A, Fedor C, Vilarinho PM (2003) J Appl Phys 94:1918

    Article  CAS  Google Scholar 

  44. Vittayakorn N, Rujijanagul G, Tan X, Marquardt MA, Cann DP (2004) J Appl Phys 96:5103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank CNPq (Contract No. 301730/2009-1) and FAPEMG (Contracts Nos. APQ-00199-09 and PPM-00342-10) Brazilian agencies, as well as FUNDACIÓN CAROLINA (Process No. C.2010) and Project MAT2010-21088-C03-02 of the Spanish Government, for the financial support. The financial support of the Latin-American Network of Ferroelectric Materials (NET-43) by the ICTP, Italy is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, J.D.S., García, J.E., Ochoa, D.A. et al. Interrelationship between phase transition characteristics and piezoelectric response in lead lanthanum zirconate titanate relaxor ceramics. J Mater Sci 47, 5715–5720 (2012). https://doi.org/10.1007/s10853-012-6461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6461-8

Keywords

Navigation