Journal of Materials Science

, Volume 47, Issue 14, pp 5546–5560 | Cite as

Prospects for the incorporation of cobalt into α-Fe2O3 nanorods during hydrothermal synthesis

  • Trevor P. AlmeidaEmail author
  • Michael W. Fay
  • Yanqiu Zhu
  • Paul D. Brown


A feasibility study on the incorporation of cobalt into α-Fe2O3 nanorods (NRs) during hydrothermal synthesis (HS) is presented as a function of FeCl3 and CoCl2 concentration, phosphate surfactant concentration and pH value, with samples assessed using X-ray diffractometry, transmission electron microscopy, selected area electron diffraction and energy dispersive X-ray analysis. No evidence was found for the incorporation of cobalt into α-Fe2O3 NRs at low pH, whilst synthesis at intermediate and high pH values favoured the formation of CoFe2O4 NPs. The critical role of pH value over the precipitation, size and phase purity of the nanostructured reaction products is emphasised. At pH ~2, large, well crystalline α-Fe2O3 nanoparticles (NPs) and NRs were grown from FeCl3 solution in the absence and presence of phosphate, respectively, whilst no evidence was found for Co precipitation or incorporation in α-Fe2O3 following HS in the presence of CoCl2. At pH ~8, smaller α-Fe2O3 NPs, as well as Co3O4 and CoFe2O4 NPs were synthesised from FeCl3, CoCl2, or a mixture thereof. HS at pH ~12 produced a mixture of larger CoFe2O4 NPs and α-Fe2O3 NPs depending on the Fe:Co molar ratio. The formation of intermediate metastable (oxy)hydroxide phases is considered pH dependent, providing for a variety of different reaction pathways. Further, inclusion of preformed Co3O4 and CoFe2O4 NPs to the FeCl3 solution at pH ~2 in the presence of phosphate surfactant resulted in the synthesis of α-Fe2O3 NRs with residual Co3O4 and CoFe2O4 NPs attached to their surfaces. The CoFe2O4 NPs encouraged local dissolution leading to the formation of α-Fe2O3 NR surface corrugations.


Co3O4 Select Area Electron Diffraction Hydrothermal Synthesis CoFe2O4 NH4H2PO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cornell RM, Schwertman U (2003) The iron oxides, 2nd edn. Wiley-VCH Verlag Gmbh & Co. KGaA, WeinheimCrossRefGoogle Scholar
  2. 2.
    Morrish AH (1994) Canted antiferromagnetism: hematite. World Scientific Publishing Co. Pte. Ltd, SingaporeGoogle Scholar
  3. 3.
    Zhao Y, Dunnil CW, Zhu Y, Gregory DH, Kockenberger W, Li Y, Hu W, Ahmad I, McCartney DG (2007) Chem Mater 19:916CrossRefGoogle Scholar
  4. 4.
    Can MM, Firat T, Ozcan S (2011) Phys B. doi: 10.1016/j.physb.2011.01.002 Google Scholar
  5. 5.
    Zysler RD, Vasquez-Mansilla M, Arciprete C, Dimitrijewits M, Rodriguez-Sierra D, Saragovi C (2001) J Magn Magn Mater 224:39CrossRefGoogle Scholar
  6. 6.
    Suber L, Santiago AG, Fiorani D, Imperatori P, Testa AM, Angiolini M, Montone A, Dormann JL (1998) Appl Organomet Chem 12:347CrossRefGoogle Scholar
  7. 7.
    Sahu KK, Rath C, Mishra NC, Anand S, Das RP (1997) J Colloid Interface Sci 185:402CrossRefGoogle Scholar
  8. 8.
    Wu J-J, Lee Y-L, Chiang H-H, Wong DK-P (2006) J Phys Chem Lett 110:18108Google Scholar
  9. 9.
    Tang B, Wang G, Zhuo L, Ge J, Cui L (2006) Inorg Chem 45:5196CrossRefGoogle Scholar
  10. 10.
    Vasquez-Mansilla M, Zysler R, Fiorani D, Suber L (2002) Phys B 320:206CrossRefGoogle Scholar
  11. 11.
    Woo K, Lee HJ (2004) J Magn Magn Mater 272–276:e1155CrossRefGoogle Scholar
  12. 12.
    Suber L, Fiorani D, Imperatori P, Foglia S, Montone A, Zysler R (1999) Nanostruct Mater 11:797CrossRefGoogle Scholar
  13. 13.
    Almeida TP, Fay MW, Zhu YQ, Brown PD (2009) J Phys Chem B 113:18689Google Scholar
  14. 14.
    Penn RL, Oskam G, Strathmann TJ, Searson PC, Stone AT, Veblen DR (2001) J Phys Chem C 105:2177Google Scholar
  15. 15.
    Sugimoto T, Sakata K, Muramatsu A (1993) J Colloid Interface Sci 159:372CrossRefGoogle Scholar
  16. 16.
    Esquivel J, Facundo IA, Trevino ME, Lopez RG (2007) J Mater Sci 42:9015. doi: 10.1007/s10853-007-1834-0 CrossRefGoogle Scholar
  17. 17.
    Theissmann R, Fuess H, Tsuda K, Terauchi M (2009) J Mater Sci 44:1421. doi: 10.1007/s10853-007-1718-3 CrossRefGoogle Scholar
  18. 18.
    Dar MA (2005) J Mater Sci 40:3031. doi: 10.1007/s10853-005-2393-x CrossRefGoogle Scholar
  19. 19.
    Sugimoto T, Muramatsu A (1996) J Colloid Interface Sci 184:626CrossRefGoogle Scholar
  20. 20.
    Sugimoto T, Wang Y, Itoh H, Muramatsu A (1998) Colloids Surf A 134:265CrossRefGoogle Scholar
  21. 21.
    Sugimoto T, Muramatsu A, Sakata K, Shindo D (1993) J Colloid Interface Sci 158:420CrossRefGoogle Scholar
  22. 22.
    Almeida TP, Fay MW, Zhu Y, Brown PD (2010) CrystEngComm 12:1700CrossRefGoogle Scholar
  23. 23.
    Almeida TP, Fay MW, Zhu Y, Brown PD (2010) Nanoscale 2:2390CrossRefGoogle Scholar
  24. 24.
    Gonsalves KE, Li H, Santiago P (2001) J Mater Sci 36:2461. doi: 10.1023/A:1017982032159 CrossRefGoogle Scholar
  25. 25.
    Dong Q, Kumada N, Yonesaki Y, Takei T, Kinomura N, Wang D (2010) J Mater Sci 45:5685. doi: 10.1007/s10853-010-4634-x CrossRefGoogle Scholar
  26. 26.
    Barrero CA, Arpe J, Sileo E, Sanchez LC, Zysler R, Saragovi C (2004) Phys B 354:27CrossRefGoogle Scholar
  27. 27.
    Alvarez M, Rueda EH, Sileo EE (2006) Chem Geol 231:288CrossRefGoogle Scholar
  28. 28.
    Ayub I, Berry FJ, Bilsborrow RL, Helgason O, Mercader RC, Moore EA, Stewart SJ, Wynn PG (2001) J Solid State Chem 156:408CrossRefGoogle Scholar
  29. 29.
    Beukes JP, Giesekke EW, Elliot W (2000) Miner Eng 13:1573CrossRefGoogle Scholar
  30. 30.
    Singh B, Sherman DM, Gilkes RJ, Wells W, Mosselmans JFW (2000) Clays Clay Miner 48:521CrossRefGoogle Scholar
  31. 31.
    Dhara S, Kotnala RK, Rastogi AC, Das BK (1992) Jpn J Appl Phys 31:3853CrossRefGoogle Scholar
  32. 32.
    Ni Y, Ge X, Zhang Z, Liu H, Zhu Z, Ye Q (2001) Mater Res Bull 36:2383CrossRefGoogle Scholar
  33. 33.
    Huang JH, Kargl-Simard C, Oliazadeh M, Alfantazi AM (2004) Hydrometallurgy 75:77CrossRefGoogle Scholar
  34. 34.
    Cote L, Teja AS, Wilkinson AP, Zhang Z (2003) Fluid Phase Equilib 210:307CrossRefGoogle Scholar
  35. 35.
    Jung I-H, Decterov SA, Pelton AD, Kim H-M, Kang Y-B (2004) Acta Mater 52:507CrossRefGoogle Scholar
  36. 36.
    Iida S (1956) J Phys Soc Jpn 11:846CrossRefGoogle Scholar
  37. 37.
    De Guire MR, Prasanna TRS, Kalonji G, O’Handley RC (1987) J Am Ceram Soc 70:831CrossRefGoogle Scholar
  38. 38.
    De Vicente J, Delgado AV, Plaza RC, Duran JDG, Gonzalez-Caballero F (2000) Langmuir 16:7954CrossRefGoogle Scholar
  39. 39.
    Wang J, Deng T, Dai Y (2006) J Alloys Compd 419:155CrossRefGoogle Scholar
  40. 40.
    Sileo EE, Rodenas LG, Paiva-Santos CO, Stephens PW, Morando PJ, Blesa MA (2006) J Solid State Chem 179:2237CrossRefGoogle Scholar
  41. 41.
    Fayek MK, Bahgat AA (1982) Phys B 46:199CrossRefGoogle Scholar
  42. 42.
    Shriver DF, Atkins PW (1999) Inorganic chemistry. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Zhao LJ, Jiang Q (2010) Mater Lett 64:677CrossRefGoogle Scholar
  44. 44.
    Baes CF, Mesmer RE (1986) The hydrolysis of cations. Robert E. Krieger Publishing Company, MalabarGoogle Scholar
  45. 45.
    Lahann RW (1976) Clays Clay Miner 24:320CrossRefGoogle Scholar
  46. 46.
    Popov VV, Gorbunov AI (2006) Inorg Mater 42:319Google Scholar
  47. 47.
    Sugimoto T, Shimotsuma Y, Itoh H (1998) Powder Technol 96:85CrossRefGoogle Scholar
  48. 48.
    Genin J-MR, Ruby C (2004) Solid State Sci 6:705CrossRefGoogle Scholar
  49. 49.
    Almeida TP, Fay MW, Zhu Y, Brown PD (2012) J Nanosci Nanotechnol (in press)Google Scholar
  50. 50.
    Das S, Hendry MJ, Essilfie-Dughan J (2011) Environ Sci Technol 45:268CrossRefGoogle Scholar
  51. 51.
    Li W, Guan J-G, Wang W, Tong G-X, Fan X-A (2009) Mater Chem Phys 118:496CrossRefGoogle Scholar
  52. 52.
    Murray J, Kirwan L, Loan M, Hodnett BK (2009) Hydrometallurgy 95:239CrossRefGoogle Scholar
  53. 53.
    Smith FG, Kidd D (1949) J Am Mineral 46(5):403Google Scholar
  54. 54.
    Atkinson RJ, Posner AM, Quirk JP (1977) Clays Clay Miner 25:49CrossRefGoogle Scholar
  55. 55.
    Persson P, Nilsson N, Sjoberg S (1996) J Colloid Interface Sci 177:263CrossRefGoogle Scholar
  56. 56.
    Soler MAG, Lima ECD, da Silva W, Melo TFO, Pimenta ACM, Sinnecker JP, Azevedo RB, Garg VK, Oliviera AC, Novak MA, Morais PC (2007) Langmuir 23:9611CrossRefGoogle Scholar
  57. 57.
    Mutaftschiev B (1993) In: Hurle DTJ (ed) Handbook of crystal growth. 1a. Fundamentals: thermodynamics and kinetics. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Trevor P. Almeida
    • 1
    • 2
    Email author
  • Michael W. Fay
    • 3
  • Yanqiu Zhu
    • 4
  • Paul D. Brown
    • 1
  1. 1.Division of Materials, Mechanics and Structures, Department of Mechanical, Materials and Manufacturing Engineering, Faculty of EngineeringThe University of Nottingham, University ParkNottinghamUK
  2. 2.Department of Earth Science and EngineeringImperial College LondonLondonUK
  3. 3.Nottingham Nanotechnology and Nanoscience CentreThe University of Nottingham, University ParkNottinghamUK
  4. 4.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations