Advertisement

Journal of Materials Science

, Volume 47, Issue 21, pp 7571–7579 | Cite as

Hydrogen uptake by graphene and nucleation of graphane

  • Leonidas Tsetseris
  • Sokrates T. Pantelides
First Principles Computations

Abstract

Reactions of hydrogen with electronic materials are important for the operation of related devices. Here we use first-principles density-functional theory calculations to describe hydrogen reactions on pristine and defective graphene. We show that small hydrogen clusters on defect-free graphene are unstable against emission of hydrogen molecules and that the associated reaction energies and barriers have a subtle dependence on the type of the clusters. In contrast, chemisorption of hydrogen in the vicinity of graphene vacancies leads to progressively larger clusters of adatoms and, eventually, to formation of graphane. The results are relevant to the optimization of graphene- and graphane-based devices, as well to the creation of graphene–graphane hybrid systems.

Keywords

Graphene Sheet Graphene Layer Hydrogen Molecule Stable Configuration Pristine Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work was supported by the McMinn Endowment at Vanderbilt University and by Grant No. HDTRA 1-10-10016. The calculations used resources of the HellasGrid and EGEE computing infrastructure.

References

  1. 1.
    Pantelides ST, Tsetseris L, Rashkeev SN, Zhou XJ, Fleetwood DM, Schrimpf RD (2007) Microelectr Reliab 47:903CrossRefGoogle Scholar
  2. 2.
    Fleetwood DM, Rodgers MP, Tsetseris L, Zhou XJ, Batyrev I, Wang S, Schrimpf RD, Pantelides ST (2007) Microelectr Reliab 47:1075CrossRefGoogle Scholar
  3. 3.
    Tsetseris L, Fleetwood DM, Schrimpf RD, Zhou XJ, Batyrev IG, Pantelides ST (2007) Microelectr Eng 84:2344CrossRefGoogle Scholar
  4. 4.
    Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401CrossRefGoogle Scholar
  5. 5.
    Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Phys Rev B 77:035427CrossRefGoogle Scholar
  6. 6.
    Elias DC, Nair RR, Mohiuddin TMG et al (2009) Science 323:610CrossRefGoogle Scholar
  7. 7.
    Balog R, Jorgensen B, Nilsson L et al (2010) Nat Mater 9:315CrossRefGoogle Scholar
  8. 8.
    Haberer D, Vyalikh DV, Taioli S et al (2010) Nano Lett 10:3360CrossRefGoogle Scholar
  9. 9.
    Haberer D, Petaccia L, Farjam M et al (2011) Phys Rev B 83:165433CrossRefGoogle Scholar
  10. 10.
    Shytov AV, Abanin DA, Levitov LS (2009) Phys Rev Lett 103:016806CrossRefGoogle Scholar
  11. 11.
    Bostwick A, McChesney JL, Emtsev KV, Seyller T, Horn K, Kevan SD, Rotenberg E (2009) Phys Rev Lett 103:056404CrossRefGoogle Scholar
  12. 12.
    Chen W, Li YF, Yu GT, Li CZ, Zhang SBB, Zhou Z, Chen ZF (2010) J Am Chem Soc 132:1699CrossRefGoogle Scholar
  13. 13.
    Bang J, Chang KJ (2010) Phys Rev B 81:193412CrossRefGoogle Scholar
  14. 14.
    Wu MH, Wu XJ, Gao Y, Zeng XC (2010) J Phys Chem C 114:139CrossRefGoogle Scholar
  15. 15.
    Boukhvalov DW, Katsnelson MI (2011) ACS Nano 5:2440CrossRefGoogle Scholar
  16. 16.
    Grassi R, Low T, Lundstrom M (2011) Nano Lett 11:4574CrossRefGoogle Scholar
  17. 17.
    Singh AK, Yakobson BI (2009) Nano Lett 9:1540CrossRefGoogle Scholar
  18. 18.
    Zhou J, Wu MM, Zhou X, Sun Q (2009) Appl Phys Lett 95:103108CrossRefGoogle Scholar
  19. 19.
    Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P (2009) Nano Lett 9:3867CrossRefGoogle Scholar
  20. 20.
    Tsetseris L, Pantelides ST (2009) Carbon 47:901CrossRefGoogle Scholar
  21. 21.
    Tsetseris L, Pantelides ST (2009) J Phys Chem B 113:941CrossRefGoogle Scholar
  22. 22.
    Tsetseris L, Pantelides ST (2011) Appl Phys Lett 99:143119CrossRefGoogle Scholar
  23. 23.
    Gharenkhanlou B, Khorasani S (2010) IEEE Trans Electron Dev 57:209CrossRefGoogle Scholar
  24. 24.
    Zboril R, Karlisky F, Bourlinos A et al (2010) Small 6:2885CrossRefGoogle Scholar
  25. 25.
    Nair RR, Ren W, Jalil R et al (2010) Small 6:2877CrossRefGoogle Scholar
  26. 26.
    Ferro Y, Teillet-Billy D, Rougeau N, Sidis V, Morisset S, Allouche A (2008) Phys Rev B 78:085417CrossRefGoogle Scholar
  27. 27.
    Ivanovskaya VV, Zobelli A, Teillet-Billy D, Rougeau N, Sidis V, Briddon PR (2010) Eur Phys J B 76:481CrossRefGoogle Scholar
  28. 28.
    Ranjibar A, Bahramy MS, Khazaei M, Mizuseki H, Kawazoe Y (2010) Phys Rev B 82:165446CrossRefGoogle Scholar
  29. 29.
    Casolo S, Lowik OM, Marinazzo R, Tantardini GF (2009) J Chem Phys 130:054704CrossRefGoogle Scholar
  30. 30.
    Xiang HJ, Kan EJ, Wei SH, Gong XG, Whangbo MH (2010) Phys Rev B 82:165425CrossRefGoogle Scholar
  31. 31.
    Denis PA, Iribarne F (2009) J Mol Struct 907:93Google Scholar
  32. 32.
    Borodin VA, Vehvilainen TT, Ganchenkova MG, Nieminen RM (2011) Phys Rev B 84:075486CrossRefGoogle Scholar
  33. 33.
    Pei QX, Zhang YW, Shenoy VB (2010) Carbon 48:898CrossRefGoogle Scholar
  34. 34.
    Leenaerts O, Partoens B, Peeters FM (2009) Phys Rev B 80:245422CrossRefGoogle Scholar
  35. 35.
    Stojkovic D, Zhang P, Lammert PE, Crespi VH (2003) Phys Rev B 68:195406CrossRefGoogle Scholar
  36. 36.
    Chandrachud P, Pujari BS, Haldar S, Sanyal B, Kanhere DG (2010) J Phys Condens Matter 22:465502CrossRefGoogle Scholar
  37. 37.
    Allouche A, Ferro Y (2006) Carbon 44:3320CrossRefGoogle Scholar
  38. 38.
    Allouche A, Ferro Y (2006) Phys Rev B 74:235426CrossRefGoogle Scholar
  39. 39.
    Sljivancanin Z, Andersen M, Hornekaer L, Hammer B (2011) Phys Rev B 83:205426CrossRefGoogle Scholar
  40. 40.
    Roman T, Dino WA, Nakanishi H, Kasai H (2009) J Phys Condens Matter 21:474219CrossRefGoogle Scholar
  41. 41.
    Dzhurakhalov AA, Peeters FM (2011) Carbon 49:3258CrossRefGoogle Scholar
  42. 42.
    Flores MZS, Autreto PAS, Legoas SB, Galvao DS (2009) Nanotechnology 20:465704CrossRefGoogle Scholar
  43. 43.
    Cadelano E, Palla PL, Giordano S, Colombo L (2010) Phys Rev B 82:235414CrossRefGoogle Scholar
  44. 44.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  45. 45.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  46. 46.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  47. 47.
    Mills G, Jonsson H, Schenter GK (1995) Surf Sci 324:305CrossRefGoogle Scholar
  48. 48.
    Tsetseris L, Wang SW, Pantelides ST (2006) Appl Phys Lett 88:051916CrossRefGoogle Scholar
  49. 49.
    Tsetseris L, Zhou XJ, Fleetwood DM, Schrimpf RD, Pantelides ST (2007) IEEE Trans Dev Mater Reliab 7:502. doi: 10.1109/TDMR.2007.910438 CrossRefGoogle Scholar
  50. 50.
    Tsetseris L, Kalfagiannis N, Logothetidis S, Pantelides ST (2007) Phys Rev B 76:224107CrossRefGoogle Scholar
  51. 51.
    Tsetseris L, Logotheridis S, Pantelides ST (2009) Appl Phys Lett 94:161903CrossRefGoogle Scholar
  52. 52.
    Tsetseris L, Hadjisavvas G, Pantelides ST (2007) Phys Rev B 76:045330CrossRefGoogle Scholar
  53. 53.
    Fan WJ, Zhang RQ, Teo BK, Aradi B, Fraeunheim T (2009) Appl Phys Lett 95:013116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Leonidas Tsetseris
    • 1
    • 2
  • Sokrates T. Pantelides
    • 2
    • 3
    • 4
  1. 1.Department of PhysicsNational Technical University of AthensAthensGreece
  2. 2.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA
  3. 3.Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleUSA
  4. 4.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations