Skip to main content
Log in

Texture weakening and static recrystallization in rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and texture evolution in the Mg–2.9Y and Mg–2.9Zn solid solution alloys were investigated following rolling and subsequent isothermal annealing. The Mg–2.9Y alloy was hot rolled, and the Mg–2.9Zn alloy was rolled at room temperature in order to evaluate the possibility of attaining texture weakening by the suppression of dynamic recrystallization (DRX) and promotion of static recrystallization (SRX). It was found that texture weakening can be attained in Mg even in the absence of Y when there is no DRX, and SRX occurs during annealing. In solid solution, Y suppresses DRX during hot rolling, and retards the kinetics of SRX and grain coarsening in Mg. In the two alloys, the orientation of statically recrystallized grains at bands/twins (TSRX grains) is close to that of double and compression twins, exhibiting a much more evenly distributed and slightly wider orientation than that of basal parent grains and twins. In both Mg–2.9Zn and Mg–2.9Y alloys, a continuous texture weakening is observed with the progress of SRX, which results in a bimodal microstructure consisting of small TSRX grains and larger ones. With the increase in grain size during coarsening, the maximum intensity of basal pole figures rises linearly, with the slope of the lines being nearly identical in the two alloys. This texture strengthening was ascribed to the consumption of small TSRX grains by larger ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Barnett MR, Nave MD, Bettles CJ (2004) Mater Sci Eng A 386:205

    Google Scholar 

  2. Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) Acta Mater 55:2101

    Article  CAS  Google Scholar 

  3. Jager A, Lukac P, Gartnerova V, Haloda J, Dopita M (2006) Mater Sci Eng A 432:20

    Article  Google Scholar 

  4. Nadella RK, Samajdar I, Gottstein G (2005) Proceedings of the 6th international conference magnesium alloys and their applications, p 1052

  5. Stanford N, Barnett M (2008) Scripta Mater 58:179

    Article  CAS  Google Scholar 

  6. Stanford N (2010) Mater Sci Eng A 527:2669

    Article  Google Scholar 

  7. Hantzsche K, Bohlen J, Wendt J, Kainer KU, Yi SB, Letzig D (2010) Scripta Mater 63:725

    Article  CAS  Google Scholar 

  8. Farzadfar SA, Martin É, Sanjari M, Essadiqi E, Wells MA, Yue S (2012) Mater Sci Eng A 534:209

    Article  CAS  Google Scholar 

  9. Farzadfar SA, Sanjari M, Jung I-H, Essadiqi E, Yue S (2011) Mater Sci Eng A 528:6742

    Article  CAS  Google Scholar 

  10. Senn JW, Agnew SR (2008) TMS Magnes Technol 153

  11. Yi S, Letzig D, Hantzsche K et al (2010) Mater Sci Forum 638–642:1506

    Article  Google Scholar 

  12. Ball EA, Prangnell PB (1994) Scripta Metall Mater 31:111

    Article  CAS  Google Scholar 

  13. Mackenzie LWF, Davis B, Humphreys FJ, Lorimer GW (2007) Mater Sci Technol 23:1173

    Article  CAS  Google Scholar 

  14. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Amsterdam

    Google Scholar 

  15. Galiyev A, Kaibyshev R, Gottstein G (2001) Acta Mater 49:1199

    Article  CAS  Google Scholar 

  16. Sitdikov O, Kaibyshev R (2001) Mater Trans 42:1928

    Article  CAS  Google Scholar 

  17. Beer AG, Barnett MR (2007) Metall Mater Trans A 38:1856

    Article  Google Scholar 

  18. Stanford N, Barnett MR (2008) Mater Sci Eng A 496:399

    Article  Google Scholar 

  19. Mackenzie LWF, Pekguleryuz M (2008) Scripta Mater 59:665

    Article  CAS  Google Scholar 

  20. Rokhlin LL (2003) Magnesium alloys containing rare-earth metals. Taylor & Francis, London

    Google Scholar 

  21. Safi-Naqvi SH, Hutchinson WB, Barnett MR (2008) Mater Sci Technol 24:1283

    Article  CAS  Google Scholar 

  22. Cottam R, Robson J, Lorimer G, Davis B (2008) Mater Sci Eng A 485:375

    Article  Google Scholar 

  23. Sandlöbes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R (2011) Acta Mater 59:429

    Article  Google Scholar 

  24. Martin É, Mishra RK, Jonas JJ (2011) Philos Mag 91:3613

    Article  CAS  Google Scholar 

  25. Perez-Prado MT, Ruano OA (2003) Scripta Mater 48:59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the NSERC (Natural Sciences and Engineering Research Council of Canada) Magnesium Strategic Research Network. One of the authors, S. A. Farzadfar, appreciates the financial support by the “Werner Graupe International Fellowship” from the Faculty of Engineering at McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Farzadfar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farzadfar, S.A., Martin, É., Sanjari, M. et al. Texture weakening and static recrystallization in rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys. J Mater Sci 47, 5488–5500 (2012). https://doi.org/10.1007/s10853-012-6440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6440-0

Keywords

Navigation