Skip to main content

Properties of amorphous and crystalline titanium dioxide from first principles

Abstract

We used first-principles methods to generate amorphous TiO2 (a-TiO2) models and our simulations lead to chemically ordered amorphous networks. We analyzed the structural, electronic, and optical properties of the resulting structures and compared with crystalline phases. We propose that two peaks found in the Ti–Ti pair correlation correspond to edge-sharing and corner-sharing Ti–Ti pairs. Resulting coordination numbers for Ti (∼6) and O (∼3) and the corresponding angle distributions suggest that local structural features of bulk crystalline TiO2 are retained in a-TiO2. The electronic density of states and the inverse participation ratio reveal that highly localized tail states at the valence band edge are due to the displacement of O atoms from the plane containing three neighboring Ti atoms; whereas, the tail states at the conduction band edge are localized on over-coordinated Ti atoms. The \(\Upgamma\)-point electronic gap of ∼2.2 eV is comparable to calculated results for bulk crystalline TiO2 despite the presence of topological disorder in the amorphous network. The calculated dielectric functions suggest that the amorphous phase of TiO2 has isotropic optical properties in contrast to those of tetragonal rutile and anatase phases. The average static dielectric constant and the fundamental absorption edge for a-TiO2 are comparable to those of the crystalline phases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Fujishima A, Honda K (1972) Nat Biotechnol 238:37

    Article  CAS  Google Scholar 

  2. Chen X, Mao SS (2007) Chem Rev 107(7):2891

    Article  CAS  Google Scholar 

  3. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) J Mater Chem 11(6):1694

    Article  CAS  Google Scholar 

  4. Petkov V, Holzhüter G, Tröge U, Gerber Th, Himmel B (1998) J Non Cryst Solids 231(1–2):17

    Article  CAS  Google Scholar 

  5. Zhang H, Banfield JF (2002) Chem Mater 14(10):4145

    Article  CAS  Google Scholar 

  6. Hoang VV (2007) Phys Stat Solid B 244(4):1280

    Article  CAS  Google Scholar 

  7. Hoang VV, Zung H, Trong NHB (2007) Eur Phys J D 44(3):515

    Article  CAS  Google Scholar 

  8. Zhang HZ, Chen B, Banfield JF (2008) Phys Rev B 78(21):214106

    Article  Google Scholar 

  9. Hoang VV (2008) Nanotechnology 19:105706

    Article  Google Scholar 

  10. Zou JA, Gao JC, Xie FY (2010) J Alloy Compd 497(1–2):420

    Article  CAS  Google Scholar 

  11. Randorn C, Irvine JTS, Robertson P (2008) Int J Photoenergy. Article ID 426872

  12. Kanna M, Wongnawa S, Buddee S, Dilokkhunakul K, Pinpithak P (2010) J Sol Gel Sci Technol 53(2):162

    Article  CAS  Google Scholar 

  13. Jeong HY, Lee JY, Choi SY (2010) Adv Funct Mater 20(22):3912

    Article  CAS  Google Scholar 

  14. Battiston GA, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi GA (2000) Thin Solid Films 371(1–2):126

    Article  CAS  Google Scholar 

  15. Zhao ZW, Tay BK, Yu GQ (2004) Appl Opt 43(6):1281

    Article  CAS  Google Scholar 

  16. Kresse G, Furthmuller J (1996) Comput Mater Sci 6(1):15

    Article  CAS  Google Scholar 

  17. Kresse G, Furthmuller J (1996) Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  18. Kresse G, Hafner J (1993) Phys Rev B 47(1):558

    Article  CAS  Google Scholar 

  19. Vanderbilt D (1990) Phys Rev B 41(11):7892

    Article  Google Scholar 

  20. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54(1):0163

    Article  Google Scholar 

  21. Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2011) Materials Science and Technology Conference Proceedings, p 12

  22. Drabold DA (2009) Eur Phys J B 68(1):1

    Article  CAS  Google Scholar 

  23. Lide DR (ed) (1997) CRC handbook of chemistry and physics, 77th edn. CRC, Boca Raton

    Google Scholar 

  24. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  25. Shirley R, Kraft M (2010) Phys Rev B 81(7):075111

    Article  Google Scholar 

  26. Islam MM, Bredow T, Gerson A (2007) Phys Rev B 76:045217

    Article  Google Scholar 

  27. Fahmi A, Minot C, Silvi B, Causá M (1993) Phys Rev B 47:11717

    Article  CAS  Google Scholar 

  28. Cromer DT, Herrington K (1955) J Am Chem Soc 77(18):4708

    Article  CAS  Google Scholar 

  29. Howard CJ, Sabine TM, Dickson F (1992) Acta Cryst 47:462

    Google Scholar 

  30. Mo SD, Ching W (1995) Phys Rev B 51(19):13023

    Article  CAS  Google Scholar 

  31. Amtout A, Leonelli R (1995) Phys Rev B 51(11):6842

    Article  CAS  Google Scholar 

  32. Tang H, Berger H, Schmid PE, Lévy F, Burri G (1993) Solid State Commun 87:847

    Article  CAS  Google Scholar 

  33. Valencia S, Marín JM, Restrepo G (2010) Open Mater Sci J 4:9

    Article  CAS  Google Scholar 

  34. Atta-Fynn R, Biswas P, Ordejon P, Drabold DA (2004) Phys Rev B 69:085207

    Article  Google Scholar 

  35. Cai B, Drabold DA (2011) Phys Rev B 84:075216

    Article  Google Scholar 

  36. Cohen ML, Chelikowsky JR (1989) In: Cardona M (ed) Electronic structure and optical properties of semiconductors, 2nd edn. Springer, Berlin

    Chapter  Google Scholar 

  37. Weaire D (1971) Phys Rev Lett 26:1541

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank NSF under DMR 0903225 for supporting this study. This study was also supported in part by an allocation of computing time from the Ohio Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Drabold.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prasai, B., Cai, B., Underwood, M.K. et al. Properties of amorphous and crystalline titanium dioxide from first principles. J Mater Sci 47, 7515–7521 (2012). https://doi.org/10.1007/s10853-012-6439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6439-6

Keywords

  • TiO2
  • Rutile
  • Dielectric Function
  • Resistive Random Access Memory
  • Static Dielectric Constant