Journal of Materials Science

, Volume 47, Issue 21, pp 7515–7521 | Cite as

Properties of amorphous and crystalline titanium dioxide from first principles

  • Binay Prasai
  • Bin Cai
  • M. Kylee Underwood
  • James P. Lewis
  • D. A. Drabold
First Principles Computations


We used first-principles methods to generate amorphous TiO2 (a-TiO2) models and our simulations lead to chemically ordered amorphous networks. We analyzed the structural, electronic, and optical properties of the resulting structures and compared with crystalline phases. We propose that two peaks found in the Ti–Ti pair correlation correspond to edge-sharing and corner-sharing Ti–Ti pairs. Resulting coordination numbers for Ti (∼6) and O (∼3) and the corresponding angle distributions suggest that local structural features of bulk crystalline TiO2 are retained in a-TiO2. The electronic density of states and the inverse participation ratio reveal that highly localized tail states at the valence band edge are due to the displacement of O atoms from the plane containing three neighboring Ti atoms; whereas, the tail states at the conduction band edge are localized on over-coordinated Ti atoms. The \(\Upgamma\)-point electronic gap of ∼2.2 eV is comparable to calculated results for bulk crystalline TiO2 despite the presence of topological disorder in the amorphous network. The calculated dielectric functions suggest that the amorphous phase of TiO2 has isotropic optical properties in contrast to those of tetragonal rutile and anatase phases. The average static dielectric constant and the fundamental absorption edge for a-TiO2 are comparable to those of the crystalline phases.


TiO2 Rutile Dielectric Function Resistive Random Access Memory Static Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank NSF under DMR 0903225 for supporting this study. This study was also supported in part by an allocation of computing time from the Ohio Supercomputer Center.


  1. 1.
    Fujishima A, Honda K (1972) Nat Biotechnol 238:37CrossRefGoogle Scholar
  2. 2.
    Chen X, Mao SS (2007) Chem Rev 107(7):2891CrossRefGoogle Scholar
  3. 3.
    Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) J Mater Chem 11(6):1694CrossRefGoogle Scholar
  4. 4.
    Petkov V, Holzhüter G, Tröge U, Gerber Th, Himmel B (1998) J Non Cryst Solids 231(1–2):17CrossRefGoogle Scholar
  5. 5.
    Zhang H, Banfield JF (2002) Chem Mater 14(10):4145CrossRefGoogle Scholar
  6. 6.
    Hoang VV (2007) Phys Stat Solid B 244(4):1280CrossRefGoogle Scholar
  7. 7.
    Hoang VV, Zung H, Trong NHB (2007) Eur Phys J D 44(3):515CrossRefGoogle Scholar
  8. 8.
    Zhang HZ, Chen B, Banfield JF (2008) Phys Rev B 78(21):214106CrossRefGoogle Scholar
  9. 9.
    Hoang VV (2008) Nanotechnology 19:105706CrossRefGoogle Scholar
  10. 10.
    Zou JA, Gao JC, Xie FY (2010) J Alloy Compd 497(1–2):420CrossRefGoogle Scholar
  11. 11.
    Randorn C, Irvine JTS, Robertson P (2008) Int J Photoenergy. Article ID 426872Google Scholar
  12. 12.
    Kanna M, Wongnawa S, Buddee S, Dilokkhunakul K, Pinpithak P (2010) J Sol Gel Sci Technol 53(2):162CrossRefGoogle Scholar
  13. 13.
    Jeong HY, Lee JY, Choi SY (2010) Adv Funct Mater 20(22):3912CrossRefGoogle Scholar
  14. 14.
    Battiston GA, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi GA (2000) Thin Solid Films 371(1–2):126CrossRefGoogle Scholar
  15. 15.
    Zhao ZW, Tay BK, Yu GQ (2004) Appl Opt 43(6):1281CrossRefGoogle Scholar
  16. 16.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6(1):15CrossRefGoogle Scholar
  17. 17.
    Kresse G, Furthmuller J (1996) Phys Rev B 54(16):11169CrossRefGoogle Scholar
  18. 18.
    Kresse G, Hafner J (1993) Phys Rev B 47(1):558CrossRefGoogle Scholar
  19. 19.
    Vanderbilt D (1990) Phys Rev B 41(11):7892CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54(1):0163CrossRefGoogle Scholar
  21. 21.
    Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2011) Materials Science and Technology Conference Proceedings, p 12Google Scholar
  22. 22.
    Drabold DA (2009) Eur Phys J B 68(1):1CrossRefGoogle Scholar
  23. 23.
    Lide DR (ed) (1997) CRC handbook of chemistry and physics, 77th edn. CRC, Boca RatonGoogle Scholar
  24. 24.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  25. 25.
    Shirley R, Kraft M (2010) Phys Rev B 81(7):075111CrossRefGoogle Scholar
  26. 26.
    Islam MM, Bredow T, Gerson A (2007) Phys Rev B 76:045217CrossRefGoogle Scholar
  27. 27.
    Fahmi A, Minot C, Silvi B, Causá M (1993) Phys Rev B 47:11717CrossRefGoogle Scholar
  28. 28.
    Cromer DT, Herrington K (1955) J Am Chem Soc 77(18):4708CrossRefGoogle Scholar
  29. 29.
    Howard CJ, Sabine TM, Dickson F (1992) Acta Cryst 47:462Google Scholar
  30. 30.
    Mo SD, Ching W (1995) Phys Rev B 51(19):13023CrossRefGoogle Scholar
  31. 31.
    Amtout A, Leonelli R (1995) Phys Rev B 51(11):6842CrossRefGoogle Scholar
  32. 32.
    Tang H, Berger H, Schmid PE, Lévy F, Burri G (1993) Solid State Commun 87:847CrossRefGoogle Scholar
  33. 33.
    Valencia S, Marín JM, Restrepo G (2010) Open Mater Sci J 4:9CrossRefGoogle Scholar
  34. 34.
    Atta-Fynn R, Biswas P, Ordejon P, Drabold DA (2004) Phys Rev B 69:085207CrossRefGoogle Scholar
  35. 35.
    Cai B, Drabold DA (2011) Phys Rev B 84:075216CrossRefGoogle Scholar
  36. 36.
    Cohen ML, Chelikowsky JR (1989) In: Cardona M (ed) Electronic structure and optical properties of semiconductors, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Weaire D (1971) Phys Rev Lett 26:1541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Binay Prasai
    • 1
  • Bin Cai
    • 1
  • M. Kylee Underwood
    • 2
  • James P. Lewis
    • 2
  • D. A. Drabold
    • 1
  1. 1.Department of Physics and AstronomyOhio UniversityAthensUSA
  2. 2.Department of PhysicsWest Virginia UniversityMorgantownUSA

Personalised recommendations