Skip to main content
Log in

Growth of SiC nanowires and nanocones using mixture of oil palm fibres and rice husk ash

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

3C-SiC nanowires and nanocones were grown by pyrolysing mixture of acid-treated oil palm empty fruit bunch fibres and rice husk ash (RHA), which acted as carbon and silicon source, respectively. The effects of different RHA amounts and pyrolysis temperature were studied. When the amount of RHA was increased to 80 % of the mixture, there was a change in the morphology from nanowires to nanocones. Overall, it was found that 40 % of RHA in the mixture was the ideal amount in growing the nanowires with the maximum yield and with the least amount of impurities. When the pyrolysis temperature was raised, there was an increase in the amount, diameter and length of the nanowires. The proposed main growth mechanism for the SiC nanowires were combination of solid-state reaction and vapour–solid mechanisms, with some nanowires grown under vapour–liquid–solid (VLS) mechanism induced by trace metals as well. The growth of the nanocones could also be related to VLS mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou W, Yan L, Wang Y, Zhang Y (2006) Appl Phys Lett 89(1):013103

    Article  Google Scholar 

  2. Cao G (2004) Nanostructures and nanomaterials: synthesis properties and applications. Imperial College Press, London

    Book  Google Scholar 

  3. Wei BQ, Ward JW, Vajtai R, Ajayan PM, Ma R, Ramanath G (2002) Chem Phys Lett 354(3–4):264

    Article  CAS  Google Scholar 

  4. Wu R, Chen J, Yang G, Wu L, Zhou S (2008) J Cryst Growth 310(15):3573

    Article  CAS  Google Scholar 

  5. Lee J-G, Cutler IB (1975) Am Ceram Soc Bull 54(2):195

    CAS  Google Scholar 

  6. Chiew YL, Cheong KY (2011) Mater Sci Eng B 176(13):951

    Article  CAS  Google Scholar 

  7. Janghorban K, Tazesh HR (1999) Ceram Int 25(1):7

    Article  CAS  Google Scholar 

  8. Selvam A, Nair NG, Singh P (1997) J Mater Sci Lett 17:57

    Article  Google Scholar 

  9. Limthongkul P, Dateraksa K, Suchatcharoenying B, Sujirote K (2006) Phase and microstructural transformation of SiC produced from raw rice husks via direct pyrolysis. Paper presented at the 4th Thailand materials science and technology conference, Bangkok

  10. Krishnarao RV (1993) J Eur Ceram Soc 12(5):395

    Article  CAS  Google Scholar 

  11. Martinez V, Valencia MF, Cruz J, Mejia JM, Chejne F (2006) Ceram Int 32(8):891

    Article  CAS  Google Scholar 

  12. Milewski JV, Gac FD, Petrovic JJ, Skaggs SR (1985) J Mater Sci 20(4):1160. doi:10.1007/bf01026309

    Article  CAS  Google Scholar 

  13. Mishra PK, Nayak BB, Mohanty B (1995) J Am Ceram Soc 78(9):2381

    Article  CAS  Google Scholar 

  14. Raju CB, Verma S (1997) Br Ceram Trans 96(3):112

    CAS  Google Scholar 

  15. Ramsey Jr. DE, Grindstaff LI (1981) Production of SiC from rice hulls and silica. US Patent 4,248,844

  16. Ray AK, Mahanty G, Ghose A (1991) J Mater Sci Lett 10(4):227

    Article  CAS  Google Scholar 

  17. Vlasov AS, Zakharov AI, Sarkisyan OA, Lukasheva NA (1992) Refractories 32(9–10):521

    Google Scholar 

  18. Lua AC, Guo J (1998) Carbon 36(11):1663

    Article  CAS  Google Scholar 

  19. Crop Statistical Data (2010). http://www.fao.org/countryprofiles/index.asp?lang=en&ISO3=MYS. Accessed 15 Oct 2010

  20. Chandrasekhar S, Pramada PN, Praveen L (2005) J Mater Sci 40:6535. doi:10.1007/s10853-005-1816-z

    Article  CAS  Google Scholar 

  21. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    Article  CAS  Google Scholar 

  22. Foo KY, Hameed BH (2011) Chem Eng J 166(2):792

    Article  CAS  Google Scholar 

  23. Genieva SD, Turmanova SC, Dimitrova AS, Vlaev LT (2008) J Therm Anal Calorim 93(2):387

    Article  CAS  Google Scholar 

  24. Markovska IG, Lyubchev LA (2007) J Therm Anal Calorim 89(3):809

    Article  CAS  Google Scholar 

  25. Radovic RL (2001) Chemistry and physics of carbon. Marcel Dekker Inc., New York

    Google Scholar 

  26. Sujirote K, Leangsuwan P (2003) J Mater Sci 38:4739. doi:10.1023/A:1027475018767

    Article  CAS  Google Scholar 

  27. Krishnarao RV, Subrahmanyam J, Kumar TJ (2001) J Eur Ceram Soc 21:99

    Article  CAS  Google Scholar 

  28. Patyk J, Rich R, Wieligor M, Zerda TW (2010) Acta Phys Pol A 118(3):480

    CAS  Google Scholar 

  29. Wang F-L, Zhang L-Y, Zhang Y-F (2008) Nanoscale Res Lett 4(2):153

    Article  Google Scholar 

  30. Li J, Zhang Y, Zhong X, Yang K, Meng J, Cao X (2007) Nanotechnology 18:245606

    Article  Google Scholar 

  31. Lee J-S, Byeun Y-K, Lee S-H, Choi S-C (2008) J Alloys Compd 456(1–2):257

    Article  CAS  Google Scholar 

  32. Meng GW, Cui Z, Zhang LD, Phillipp F (2000) J Cryst Growth 209(4):801

    Article  CAS  Google Scholar 

  33. Niu JJ, Wang JN (2009) Appl Phys A Mater Sci Process 94(3):613. doi:10.1007/s00339-008-4868-5

    Article  CAS  Google Scholar 

  34. Paiano P, Prete P, Lovergine N, Mancini AM (2006) J Appl Phys 100(9):094305

    Article  Google Scholar 

  35. Chase MWJ (1998) J Phys Chem Ref Data Monogr 9:1

    Google Scholar 

  36. Bechtold BC, Beatty RL, Cook JL (1982) In: Progress in science and engineering of composites. Proceedings of the 4th international conference on composite materials, Tokyo, p 113

  37. Patel M, Karera A (1989) J Mater Sci Lett 8(8):955

    Article  CAS  Google Scholar 

  38. Ratke L, Voorhees PW (2002) Growth and coarsening: Ostwald ripening in material processing. Springer, Berlin

  39. Sundaresan SG, Davydov AV, Vaudin MD, Levin I, Maslar JE, Tian Y-L, Rao MV (2007) Chem Mater 19:5531

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Universiti Sains Malaysia Short Term grant (6039038) and USM RU-PRGS grant (1001/PBAHAN/8033004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiew, Y.L., Cheong, K.Y. Growth of SiC nanowires and nanocones using mixture of oil palm fibres and rice husk ash. J Mater Sci 47, 5477–5487 (2012). https://doi.org/10.1007/s10853-012-6438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6438-7

Keywords

Navigation